| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opabiota.1 |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } |
| 2 |
|
opabiota.2 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 4 |
2
|
iotabidv |
⊢ ( 𝑥 = 𝐵 → ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 𝜓 ) ) |
| 5 |
3 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) ↔ ( 𝐹 ‘ 𝐵 ) = ( ℩ 𝑦 𝜓 ) ) ) |
| 6 |
|
vex |
⊢ 𝑥 ∈ V |
| 7 |
6
|
eldm |
⊢ ( 𝑥 ∈ dom 𝐹 ↔ ∃ 𝑦 𝑥 𝐹 𝑦 ) |
| 8 |
|
nfiota1 |
⊢ Ⅎ 𝑦 ( ℩ 𝑦 𝜑 ) |
| 9 |
8
|
nfeq2 |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) |
| 10 |
1
|
opabiotafun |
⊢ Fun 𝐹 |
| 11 |
|
funbrfv |
⊢ ( Fun 𝐹 → ( 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 13 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
| 14 |
1
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } ) |
| 15 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } ↔ { 𝑦 ∣ 𝜑 } = { 𝑦 } ) |
| 16 |
13 14 15
|
3bitri |
⊢ ( 𝑥 𝐹 𝑦 ↔ { 𝑦 ∣ 𝜑 } = { 𝑦 } ) |
| 17 |
|
vsnid |
⊢ 𝑦 ∈ { 𝑦 } |
| 18 |
|
id |
⊢ ( { 𝑦 ∣ 𝜑 } = { 𝑦 } → { 𝑦 ∣ 𝜑 } = { 𝑦 } ) |
| 19 |
17 18
|
eleqtrrid |
⊢ ( { 𝑦 ∣ 𝜑 } = { 𝑦 } → 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) |
| 20 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) |
| 21 |
19 20
|
sylib |
⊢ ( { 𝑦 ∣ 𝜑 } = { 𝑦 } → 𝜑 ) |
| 22 |
16 21
|
sylbi |
⊢ ( 𝑥 𝐹 𝑦 → 𝜑 ) |
| 23 |
|
vex |
⊢ 𝑦 ∈ V |
| 24 |
6 23
|
breldm |
⊢ ( 𝑥 𝐹 𝑦 → 𝑥 ∈ dom 𝐹 ) |
| 25 |
1
|
opabiotadm |
⊢ dom 𝐹 = { 𝑥 ∣ ∃! 𝑦 𝜑 } |
| 26 |
25
|
eqabri |
⊢ ( 𝑥 ∈ dom 𝐹 ↔ ∃! 𝑦 𝜑 ) |
| 27 |
24 26
|
sylib |
⊢ ( 𝑥 𝐹 𝑦 → ∃! 𝑦 𝜑 ) |
| 28 |
|
iota1 |
⊢ ( ∃! 𝑦 𝜑 → ( 𝜑 ↔ ( ℩ 𝑦 𝜑 ) = 𝑦 ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝑥 𝐹 𝑦 → ( 𝜑 ↔ ( ℩ 𝑦 𝜑 ) = 𝑦 ) ) |
| 30 |
22 29
|
mpbid |
⊢ ( 𝑥 𝐹 𝑦 → ( ℩ 𝑦 𝜑 ) = 𝑦 ) |
| 31 |
12 30
|
eqtr4d |
⊢ ( 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) ) |
| 32 |
9 31
|
exlimi |
⊢ ( ∃ 𝑦 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) ) |
| 33 |
7 32
|
sylbi |
⊢ ( 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) ) |
| 34 |
5 33
|
vtoclga |
⊢ ( 𝐵 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐵 ) = ( ℩ 𝑦 𝜓 ) ) |