| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opabiota.1 |  |-  F = { <. x , y >. | { y | ph } = { y } } | 
						
							| 2 |  | opabiota.2 |  |-  ( x = B -> ( ph <-> ps ) ) | 
						
							| 3 |  | fveq2 |  |-  ( x = B -> ( F ` x ) = ( F ` B ) ) | 
						
							| 4 | 2 | iotabidv |  |-  ( x = B -> ( iota y ph ) = ( iota y ps ) ) | 
						
							| 5 | 3 4 | eqeq12d |  |-  ( x = B -> ( ( F ` x ) = ( iota y ph ) <-> ( F ` B ) = ( iota y ps ) ) ) | 
						
							| 6 |  | vex |  |-  x e. _V | 
						
							| 7 | 6 | eldm |  |-  ( x e. dom F <-> E. y x F y ) | 
						
							| 8 |  | nfiota1 |  |-  F/_ y ( iota y ph ) | 
						
							| 9 | 8 | nfeq2 |  |-  F/ y ( F ` x ) = ( iota y ph ) | 
						
							| 10 | 1 | opabiotafun |  |-  Fun F | 
						
							| 11 |  | funbrfv |  |-  ( Fun F -> ( x F y -> ( F ` x ) = y ) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( x F y -> ( F ` x ) = y ) | 
						
							| 13 |  | df-br |  |-  ( x F y <-> <. x , y >. e. F ) | 
						
							| 14 | 1 | eleq2i |  |-  ( <. x , y >. e. F <-> <. x , y >. e. { <. x , y >. | { y | ph } = { y } } ) | 
						
							| 15 |  | opabidw |  |-  ( <. x , y >. e. { <. x , y >. | { y | ph } = { y } } <-> { y | ph } = { y } ) | 
						
							| 16 | 13 14 15 | 3bitri |  |-  ( x F y <-> { y | ph } = { y } ) | 
						
							| 17 |  | vsnid |  |-  y e. { y } | 
						
							| 18 |  | id |  |-  ( { y | ph } = { y } -> { y | ph } = { y } ) | 
						
							| 19 | 17 18 | eleqtrrid |  |-  ( { y | ph } = { y } -> y e. { y | ph } ) | 
						
							| 20 |  | abid |  |-  ( y e. { y | ph } <-> ph ) | 
						
							| 21 | 19 20 | sylib |  |-  ( { y | ph } = { y } -> ph ) | 
						
							| 22 | 16 21 | sylbi |  |-  ( x F y -> ph ) | 
						
							| 23 |  | vex |  |-  y e. _V | 
						
							| 24 | 6 23 | breldm |  |-  ( x F y -> x e. dom F ) | 
						
							| 25 | 1 | opabiotadm |  |-  dom F = { x | E! y ph } | 
						
							| 26 | 25 | eqabri |  |-  ( x e. dom F <-> E! y ph ) | 
						
							| 27 | 24 26 | sylib |  |-  ( x F y -> E! y ph ) | 
						
							| 28 |  | iota1 |  |-  ( E! y ph -> ( ph <-> ( iota y ph ) = y ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( x F y -> ( ph <-> ( iota y ph ) = y ) ) | 
						
							| 30 | 22 29 | mpbid |  |-  ( x F y -> ( iota y ph ) = y ) | 
						
							| 31 | 12 30 | eqtr4d |  |-  ( x F y -> ( F ` x ) = ( iota y ph ) ) | 
						
							| 32 | 9 31 | exlimi |  |-  ( E. y x F y -> ( F ` x ) = ( iota y ph ) ) | 
						
							| 33 | 7 32 | sylbi |  |-  ( x e. dom F -> ( F ` x ) = ( iota y ph ) ) | 
						
							| 34 | 5 33 | vtoclga |  |-  ( B e. dom F -> ( F ` B ) = ( iota y ps ) ) |