| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oprabex3.1 |
⊢ 𝐻 ∈ V |
| 2 |
|
oprabex3.2 |
⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) } |
| 3 |
1 1
|
xpex |
⊢ ( 𝐻 × 𝐻 ) ∈ V |
| 4 |
|
moeq |
⊢ ∃* 𝑧 𝑧 = 𝑅 |
| 5 |
4
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) |
| 6 |
5
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) |
| 7 |
|
anass |
⊢ ( ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
| 8 |
7
|
2exbii |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑢 ∃ 𝑓 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
| 9 |
|
19.42vv |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
| 10 |
8 9
|
bitri |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
| 11 |
10
|
2exbii |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
| 12 |
11
|
mobii |
⊢ ( ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
| 13 |
6 12
|
mpbir |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) |
| 14 |
13
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) → ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) |
| 15 |
3 3 14 2
|
oprabex |
⊢ 𝐹 ∈ V |