Step |
Hyp |
Ref |
Expression |
1 |
|
oprabex3.1 |
⊢ 𝐻 ∈ V |
2 |
|
oprabex3.2 |
⊢ 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ) } |
3 |
1 1
|
xpex |
⊢ ( 𝐻 × 𝐻 ) ∈ V |
4 |
|
moeq |
⊢ ∃* 𝑧 𝑧 = 𝑅 |
5 |
4
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) |
6 |
5
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) |
7 |
|
anass |
⊢ ( ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) ) |
8 |
7
|
2exbii |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑢 ∃ 𝑓 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) ) |
9 |
|
19.42vv |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) ) |
10 |
8 9
|
bitri |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) ) |
11 |
10
|
2exbii |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑤 ∃ 𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) ) |
12 |
11
|
mobii |
⊢ ( ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ↔ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = 𝑅 ) ) ) |
13 |
6 12
|
mpbir |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) |
14 |
13
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) → ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = 𝑅 ) ) |
15 |
3 3 14 2
|
oprabex |
⊢ 𝐹 ∈ V |