| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preimagelt.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | preimagelt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | preimagelt.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 5 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } | 
						
							| 6 | 4 5 | nfdif | ⊢ Ⅎ 𝑥 ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) | 
						
							| 7 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } | 
						
							| 8 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } )  →  𝑥  ∈  𝐴 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 10 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } )  →  ¬  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) | 
						
							| 11 | 8 | anim1i | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } )  ∧  𝐶  ≤  𝐵 )  →  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝐵 ) ) | 
						
							| 12 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 }  ↔  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝐵 ) ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } )  ∧  𝐶  ≤  𝐵 )  →  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) | 
						
							| 14 | 10 13 | mtand | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } )  →  ¬  𝐶  ≤  𝐵 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) )  →  ¬  𝐶  ≤  𝐵 ) | 
						
							| 16 | 8 2 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 17 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 18 | 16 17 | xrltnled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) )  →  ( 𝐵  <  𝐶  ↔  ¬  𝐶  ≤  𝐵 ) ) | 
						
							| 19 | 15 18 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) )  →  𝐵  <  𝐶 ) | 
						
							| 20 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 }  ↔  ( 𝑥  ∈  𝐴  ∧  𝐵  <  𝐶 ) ) | 
						
							| 21 | 9 19 20 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) )  →  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } ) | 
						
							| 22 |  | rabidim1 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 }  →  𝑥  ∈  𝐴 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  𝑥  ∈  𝐴 ) | 
						
							| 24 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 }  →  𝐵  <  𝐶 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  𝐵  <  𝐶 ) | 
						
							| 26 | 22 2 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  𝐵  ∈  ℝ* ) | 
						
							| 27 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  𝐶  ∈  ℝ* ) | 
						
							| 28 | 26 27 | xrltnled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  ( 𝐵  <  𝐶  ↔  ¬  𝐶  ≤  𝐵 ) ) | 
						
							| 29 | 25 28 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  ¬  𝐶  ≤  𝐵 ) | 
						
							| 30 | 29 | intnand | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  ¬  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝐵 ) ) | 
						
							| 31 | 30 12 | sylnibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  ¬  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) | 
						
							| 32 | 23 31 | eldifd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } )  →  𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } ) ) | 
						
							| 33 | 21 32 | impbida | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } )  ↔  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } ) ) | 
						
							| 34 | 1 6 7 33 | eqrd | ⊢ ( 𝜑  →  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐶  ≤  𝐵 } )  =  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝐶 } ) |