| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bi2.04 | ⊢ ( ( 𝑥  ≠  1  →  ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  𝑥  =  𝐴 ) )  ↔  ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  ( 𝑥  ≠  1  →  𝑥  =  𝐴 ) ) ) | 
						
							| 2 |  | impexp | ⊢ ( ( ( 𝑥  ≠  1  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  →  𝑥  =  𝐴 )  ↔  ( 𝑥  ≠  1  →  ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  𝑥  =  𝐴 ) ) ) | 
						
							| 3 |  | neor | ⊢ ( ( 𝑥  =  1  ∨  𝑥  =  𝐴 )  ↔  ( 𝑥  ≠  1  →  𝑥  =  𝐴 ) ) | 
						
							| 4 | 3 | imbi2i | ⊢ ( ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  ( 𝑥  =  1  ∨  𝑥  =  𝐴 ) )  ↔  ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  ( 𝑥  ≠  1  →  𝑥  =  𝐴 ) ) ) | 
						
							| 5 | 1 2 4 | 3bitr4ri | ⊢ ( ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  ( 𝑥  =  1  ∨  𝑥  =  𝐴 ) )  ↔  ( ( 𝑥  ≠  1  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  →  𝑥  =  𝐴 ) ) | 
						
							| 6 |  | nngt1ne1 | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  <  𝑥  ↔  𝑥  ≠  1 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( 1  <  𝑥  ↔  𝑥  ≠  1 ) ) | 
						
							| 8 | 7 | anbi1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( 1  <  𝑥  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  ↔  ( 𝑥  ≠  1  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ ) ) ) | 
						
							| 9 |  | nnz | ⊢ ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  ( 𝐴  /  𝑥 )  ∈  ℤ ) | 
						
							| 10 |  | nnre | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ ) | 
						
							| 11 |  | gtndiv | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  ∈  ℕ  ∧  𝐴  <  𝑥 )  →  ¬  ( 𝐴  /  𝑥 )  ∈  ℤ ) | 
						
							| 12 | 11 | 3expia | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  <  𝑥  →  ¬  ( 𝐴  /  𝑥 )  ∈  ℤ ) ) | 
						
							| 13 | 10 12 | sylan | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  <  𝑥  →  ¬  ( 𝐴  /  𝑥 )  ∈  ℤ ) ) | 
						
							| 14 | 13 | con2d | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝐴  /  𝑥 )  ∈  ℤ  →  ¬  𝐴  <  𝑥 ) ) | 
						
							| 15 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 16 |  | lenlt | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝑥  ≤  𝐴  ↔  ¬  𝐴  <  𝑥 ) ) | 
						
							| 17 | 10 15 16 | syl2an | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 𝑥  ≤  𝐴  ↔  ¬  𝐴  <  𝑥 ) ) | 
						
							| 18 | 14 17 | sylibrd | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝐴  /  𝑥 )  ∈  ℤ  →  𝑥  ≤  𝐴 ) ) | 
						
							| 19 | 18 | ancoms | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( 𝐴  /  𝑥 )  ∈  ℤ  →  𝑥  ≤  𝐴 ) ) | 
						
							| 20 | 9 19 | syl5 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  𝑥  ≤  𝐴 ) ) | 
						
							| 21 | 20 | pm4.71rd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( 𝐴  /  𝑥 )  ∈  ℕ  ↔  ( 𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ ) ) ) | 
						
							| 22 | 21 | anbi2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( 1  <  𝑥  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  ↔  ( 1  <  𝑥  ∧  ( 𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ ) ) ) ) | 
						
							| 23 |  | 3anass | ⊢ ( ( 1  <  𝑥  ∧  𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  ↔  ( 1  <  𝑥  ∧  ( 𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ ) ) ) | 
						
							| 24 | 22 23 | bitr4di | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( 1  <  𝑥  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  ↔  ( 1  <  𝑥  ∧  𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ ) ) ) | 
						
							| 25 | 8 24 | bitr3d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( 𝑥  ≠  1  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  ↔  ( 1  <  𝑥  ∧  𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ ) ) ) | 
						
							| 26 | 25 | imbi1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( ( 𝑥  ≠  1  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  →  𝑥  =  𝐴 )  ↔  ( ( 1  <  𝑥  ∧  𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  →  𝑥  =  𝐴 ) ) ) | 
						
							| 27 | 5 26 | bitrid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑥  ∈  ℕ )  →  ( ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  ( 𝑥  =  1  ∨  𝑥  =  𝐴 ) )  ↔  ( ( 1  <  𝑥  ∧  𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  →  𝑥  =  𝐴 ) ) ) | 
						
							| 28 | 27 | ralbidva | ⊢ ( 𝐴  ∈  ℕ  →  ( ∀ 𝑥  ∈  ℕ ( ( 𝐴  /  𝑥 )  ∈  ℕ  →  ( 𝑥  =  1  ∨  𝑥  =  𝐴 ) )  ↔  ∀ 𝑥  ∈  ℕ ( ( 1  <  𝑥  ∧  𝑥  ≤  𝐴  ∧  ( 𝐴  /  𝑥 )  ∈  ℕ )  →  𝑥  =  𝐴 ) ) ) |