| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspertr.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 3 |  | prjspertr.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑉 ) | 
						
							| 4 |  | prjspertr.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑉 ) | 
						
							| 5 |  | prjspertr.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | prjsprellsp.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑉 ) | 
						
							| 7 |  | ibar | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 )  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) ) | 
						
							| 8 | 7 | bicomd | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 ) )  ↔  ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑉  ∈  LVec  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 ) )  ↔  ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 11 | 1 2 3 4 5 10 | prjspreln0 | ⊢ ( 𝑉  ∈  LVec  →  ( 𝑋  ∼  𝑌  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑉  ∈  LVec  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ∼  𝑌  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑉 )  =  ( Base ‘ 𝑉 ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑉  ∈  LVec  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑉  ∈  LVec ) | 
						
							| 15 |  | eldifi | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } )  →  𝑋  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 16 | 15 2 | eleq2s | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 17 | 16 | ad2antrl | ⊢ ( ( 𝑉  ∈  LVec  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 18 |  | eldifi | ⊢ ( 𝑌  ∈  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } )  →  𝑌  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 19 | 18 2 | eleq2s | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 20 | 19 | ad2antll | ⊢ ( ( 𝑉  ∈  LVec  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 21 | 13 3 5 10 4 6 14 17 20 | lspsneq | ⊢ ( ( 𝑉  ∈  LVec  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 22 | 9 12 21 | 3bitr4d | ⊢ ( ( 𝑉  ∈  LVec  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ∼  𝑌  ↔  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) |