| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prpair.p | ⊢ 𝑃  =  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝑋  ∈  𝑃  ↔  𝑋  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 3 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( ♯ ‘ 𝑥 )  =  2  ↔  ( ♯ ‘ 𝑋 )  =  2 ) ) | 
						
							| 4 | 3 | elrab | ⊢ ( 𝑋  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 ) ) | 
						
							| 5 |  | hash2prb | ⊢ ( 𝑋  ∈  𝒫  𝑉  →  ( ( ♯ ‘ 𝑋 )  =  2  ↔  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝑎  ≠  𝑏  ∧  𝑋  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 6 |  | elpwi | ⊢ ( 𝑋  ∈  𝒫  𝑉  →  𝑋  ⊆  𝑉 ) | 
						
							| 7 |  | ancom | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑋  =  { 𝑎 ,  𝑏 } )  ↔  ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) | 
						
							| 8 | 7 | 2rexbii | ⊢ ( ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝑎  ≠  𝑏  ∧  𝑋  =  { 𝑎 ,  𝑏 } )  ↔  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) | 
						
							| 9 | 8 | biimpi | ⊢ ( ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝑎  ≠  𝑏  ∧  𝑋  =  { 𝑎 ,  𝑏 } )  →  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) | 
						
							| 10 |  | ss2rexv | ⊢ ( 𝑋  ⊆  𝑉  →  ( ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) ) | 
						
							| 11 | 6 9 10 | syl2im | ⊢ ( 𝑋  ∈  𝒫  𝑉  →  ( ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝑎  ≠  𝑏  ∧  𝑋  =  { 𝑎 ,  𝑏 } )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) ) | 
						
							| 12 | 5 11 | sylbid | ⊢ ( 𝑋  ∈  𝒫  𝑉  →  ( ( ♯ ‘ 𝑋 )  =  2  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) | 
						
							| 14 |  | prelpwi | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  { 𝑎 ,  𝑏 }  ∈  𝒫  𝑉 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) )  →  { 𝑎 ,  𝑏 }  ∈  𝒫  𝑉 ) | 
						
							| 16 |  | hashprg | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑎  ≠  𝑏  ↔  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 17 | 16 | biimpd | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑎  ≠  𝑏  →  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 18 | 17 | adantld | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 )  →  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) )  →  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑋  =  { 𝑎 ,  𝑏 }  →  ( 𝑋  ∈  𝒫  𝑉  ↔  { 𝑎 ,  𝑏 }  ∈  𝒫  𝑉 ) ) | 
						
							| 21 |  | fveqeq2 | ⊢ ( 𝑋  =  { 𝑎 ,  𝑏 }  →  ( ( ♯ ‘ 𝑋 )  =  2  ↔  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) | 
						
							| 22 | 20 21 | anbi12d | ⊢ ( 𝑋  =  { 𝑎 ,  𝑏 }  →  ( ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 )  ↔  ( { 𝑎 ,  𝑏 }  ∈  𝒫  𝑉  ∧  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 )  →  ( ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 )  ↔  ( { 𝑎 ,  𝑏 }  ∈  𝒫  𝑉  ∧  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) )  →  ( ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 )  ↔  ( { 𝑎 ,  𝑏 }  ∈  𝒫  𝑉  ∧  ( ♯ ‘ { 𝑎 ,  𝑏 } )  =  2 ) ) ) | 
						
							| 25 | 15 19 24 | mpbir2and | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) )  →  ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 )  →  ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 ) ) ) | 
						
							| 27 | 26 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 )  →  ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 ) ) | 
						
							| 28 | 13 27 | impbii | ⊢ ( ( 𝑋  ∈  𝒫  𝑉  ∧  ( ♯ ‘ 𝑋 )  =  2 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) | 
						
							| 29 | 2 4 28 | 3bitri | ⊢ ( 𝑋  ∈  𝑃  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑋  =  { 𝑎 ,  𝑏 }  ∧  𝑎  ≠  𝑏 ) ) |