Step |
Hyp |
Ref |
Expression |
1 |
|
prpair.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
2 |
1
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑃 ↔ 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
3 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ 𝑋 ) = 2 ) ) |
4 |
3
|
elrab |
⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) ) |
5 |
|
hash2prb |
⊢ ( 𝑋 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑋 ) = 2 ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑎 ≠ 𝑏 ∧ 𝑋 = { 𝑎 , 𝑏 } ) ) ) |
6 |
|
elpwi |
⊢ ( 𝑋 ∈ 𝒫 𝑉 → 𝑋 ⊆ 𝑉 ) |
7 |
|
ancom |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑋 = { 𝑎 , 𝑏 } ) ↔ ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) |
8 |
7
|
2rexbii |
⊢ ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑎 ≠ 𝑏 ∧ 𝑋 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) |
9 |
8
|
biimpi |
⊢ ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑎 ≠ 𝑏 ∧ 𝑋 = { 𝑎 , 𝑏 } ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) |
10 |
|
ss2rexv |
⊢ ( 𝑋 ⊆ 𝑉 → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) ) |
11 |
6 9 10
|
syl2im |
⊢ ( 𝑋 ∈ 𝒫 𝑉 → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑎 ≠ 𝑏 ∧ 𝑋 = { 𝑎 , 𝑏 } ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) ) |
12 |
5 11
|
sylbid |
⊢ ( 𝑋 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑋 ) = 2 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) ) |
13 |
12
|
imp |
⊢ ( ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) |
14 |
|
prelpwi |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) → { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ) |
16 |
|
hashprg |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
17 |
16
|
biimpd |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ≠ 𝑏 → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
18 |
17
|
adantld |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
19 |
18
|
imp |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
20 |
|
eleq1 |
⊢ ( 𝑋 = { 𝑎 , 𝑏 } → ( 𝑋 ∈ 𝒫 𝑉 ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ) ) |
21 |
|
fveqeq2 |
⊢ ( 𝑋 = { 𝑎 , 𝑏 } → ( ( ♯ ‘ 𝑋 ) = 2 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
22 |
20 21
|
anbi12d |
⊢ ( 𝑋 = { 𝑎 , 𝑏 } → ( ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) → ( ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) → ( ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) ) |
25 |
15 19 24
|
mpbir2and |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) ) |
26 |
25
|
ex |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) → ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) ) ) |
27 |
26
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) → ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) ) |
28 |
13 27
|
impbii |
⊢ ( ( 𝑋 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑋 ) = 2 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) |
29 |
2 4 28
|
3bitri |
⊢ ( 𝑋 ∈ 𝑃 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑋 = { 𝑎 , 𝑏 } ∧ 𝑎 ≠ 𝑏 ) ) |