| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psd1.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
psd1.u |
⊢ 1 = ( 1r ‘ 𝑆 ) |
| 3 |
|
psd1.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 4 |
|
psd1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 5 |
|
psd1.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
psd1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 10 |
1 4 5
|
psrcrng |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 11 |
10
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 12 |
7 2
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → 1 ∈ ( Base ‘ 𝑆 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑆 ) ) |
| 14 |
1 7 8 9 5 6 13 13
|
psdmul |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1 ( .r ‘ 𝑆 ) 1 ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ( .r ‘ 𝑆 ) 1 ) ( +g ‘ 𝑆 ) ( 1 ( .r ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) ) ) |
| 15 |
7 9 2 11 13
|
ringlidmd |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝑆 ) 1 ) = 1 ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1 ( .r ‘ 𝑆 ) 1 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) |
| 17 |
5
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 18 |
17
|
grpmgmd |
⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
| 19 |
1 7 18 6 13
|
psdcl |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ∈ ( Base ‘ 𝑆 ) ) |
| 20 |
7 9 2 11 19
|
ringridmd |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ( .r ‘ 𝑆 ) 1 ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) |
| 21 |
7 9 2 11 19
|
ringlidmd |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) |
| 22 |
20 21
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ( .r ‘ 𝑆 ) 1 ) ( +g ‘ 𝑆 ) ( 1 ( .r ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) ) = ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ( +g ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) ) |
| 23 |
14 16 22
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ( +g ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) |
| 24 |
10
|
crnggrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 25 |
7 8 3
|
grpid |
⊢ ( ( 𝑆 ∈ Grp ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ( +g ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ↔ 0 = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) ) |
| 26 |
24 19 25
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ( +g ‘ 𝑆 ) ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ↔ 0 = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) ) |
| 27 |
23 26
|
mpbid |
⊢ ( 𝜑 → 0 = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) ) |
| 28 |
27
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 1 ) = 0 ) |