Step |
Hyp |
Ref |
Expression |
1 |
|
psdmul.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psdmul.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
psdmul.p |
⊢ + = ( +g ‘ 𝑆 ) |
4 |
|
psdmul.m |
⊢ · = ( .r ‘ 𝑆 ) |
5 |
|
psdmul.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
psdmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
7 |
|
psdmul.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
psdmul.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
11 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
11
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CMnd ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
15 |
|
reldmpsr |
⊢ Rel dom mPwSer |
16 |
1 2 15
|
strov2rcl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐼 ∈ V ) |
17 |
7 16
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
18 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
19 |
18
|
psrbagsn |
⊢ ( 𝐼 ∈ V → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
20 |
17 19
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
22 |
18
|
psrbagaddcl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
23 |
14 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
24 |
18
|
psrbaglefi |
⊢ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ Fin ) |
25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ Fin ) |
26 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
27 |
5
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
28 |
27
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑅 ∈ Mnd ) |
30 |
18
|
psrbagf |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
32 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
33 |
31 32
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
34 |
|
peano2nn0 |
⊢ ( ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
37 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
38 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑅 ∈ Ring ) |
39 |
1 9 18 2 7
|
psrelbas |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
40 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
41 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
43 |
40 42
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ) |
44 |
1 9 18 2 8
|
psrelbas |
⊢ ( 𝜑 → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
46 |
|
eqid |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } |
47 |
18 46
|
psrbagconcl |
⊢ ( ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
48 |
23 47
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
49 |
|
elrabi |
⊢ ( ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
50 |
48 49
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
51 |
45 50
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) |
52 |
9 37 38 43 51
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
53 |
9 26 29 36 52
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
54 |
|
disjdifr |
⊢ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∩ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = ∅ |
55 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∩ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = ∅ ) |
56 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
57 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
58 |
56 57
|
ifcli |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℕ0 |
59 |
58
|
nn0ge0i |
⊢ 0 ≤ if ( 𝑖 = 𝑋 , 1 , 0 ) |
60 |
31
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
61 |
60
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℝ ) |
62 |
58
|
nn0rei |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ |
63 |
62
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ ) |
64 |
61 63
|
addge01d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 0 ≤ if ( 𝑖 = 𝑋 , 1 , 0 ) ↔ ( 𝑑 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
65 |
59 64
|
mpbii |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
66 |
65
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ∀ 𝑖 ∈ 𝐼 ( 𝑑 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
67 |
31
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 Fn 𝐼 ) |
68 |
56 57
|
ifcli |
⊢ if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ℕ0 |
69 |
68
|
elexi |
⊢ if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ V |
70 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
71 |
69 70
|
fnmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 |
72 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
73 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ V ) |
74 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
75 |
67 72 73 73 74
|
offn |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
76 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
77 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑖 → ( 𝑦 = 𝑋 ↔ 𝑖 = 𝑋 ) ) |
78 |
77
|
ifbid |
⊢ ( 𝑦 = 𝑖 → if ( 𝑦 = 𝑋 , 1 , 0 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
79 |
58
|
elexi |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ V |
80 |
78 70 79
|
fvmpt |
⊢ ( 𝑖 ∈ 𝐼 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
81 |
80
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
82 |
67 72 73 73 74 76 81
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
83 |
67 75 73 73 74 76 82
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑑 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
84 |
66 83
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
85 |
84
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
86 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ V ) |
87 |
18
|
psrbagf |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑘 : 𝐼 ⟶ ℕ0 ) |
88 |
87
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
89 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
90 |
18
|
psrbagf |
⊢ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
91 |
23 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
92 |
91
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
93 |
|
nn0re |
⊢ ( 𝑞 ∈ ℕ0 → 𝑞 ∈ ℝ ) |
94 |
|
nn0re |
⊢ ( 𝑟 ∈ ℕ0 → 𝑟 ∈ ℝ ) |
95 |
|
nn0re |
⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℝ ) |
96 |
|
letr |
⊢ ( ( 𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( ( 𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠 ) → 𝑞 ≤ 𝑠 ) ) |
97 |
93 94 95 96
|
syl3an |
⊢ ( ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠 ) → 𝑞 ≤ 𝑠 ) ) |
98 |
97
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ) → ( ( 𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠 ) → 𝑞 ≤ 𝑠 ) ) |
99 |
86 88 89 92 98
|
caoftrn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∘r ≤ 𝑑 ∧ 𝑑 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) → 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
100 |
85 99
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∘r ≤ 𝑑 → 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
101 |
100
|
ss2rabdv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
102 |
|
undifr |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
103 |
101 102
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
104 |
103
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
105 |
9 10 13 25 53 55 104
|
gsummptfidmsplit |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
106 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
107 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
108 |
107
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
109 |
108
|
rabex |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ V |
110 |
109
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∈ V ) |
111 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ V |
112 |
|
eqid |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) |
113 |
111 112
|
fnmpti |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } |
114 |
113
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
115 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
116 |
114 25 115
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
117 |
9 106 26 110 52 116 13 35
|
gsummulg |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
118 |
|
difrab |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) } |
119 |
118
|
eleq2i |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↔ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) } ) |
120 |
|
breq1 |
⊢ ( 𝑘 = 𝑢 → ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
121 |
|
breq1 |
⊢ ( 𝑘 = 𝑢 → ( 𝑘 ∘r ≤ 𝑑 ↔ 𝑢 ∘r ≤ 𝑑 ) ) |
122 |
121
|
notbid |
⊢ ( 𝑘 = 𝑢 → ( ¬ 𝑘 ∘r ≤ 𝑑 ↔ ¬ 𝑢 ∘r ≤ 𝑑 ) ) |
123 |
120 122
|
anbi12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) ↔ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ) ) |
124 |
123
|
elrab |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) } ↔ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ) ) |
125 |
18
|
psrbagf |
⊢ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑢 : 𝐼 ⟶ ℕ0 ) |
126 |
125
|
ffnd |
⊢ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑢 Fn 𝐼 ) |
127 |
126
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑢 Fn 𝐼 ) |
128 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
129 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ V ) |
130 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
131 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 Fn 𝐼 ) |
132 |
68
|
a1i |
⊢ ( 𝑦 ∈ 𝐼 → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ℕ0 ) |
133 |
70 132
|
fmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 |
134 |
133
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
135 |
134
|
ffnd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
136 |
135
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
137 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
138 |
80
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
139 |
131 136 129 129 74 137 138
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
140 |
127 128 129 129 74 130 139
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
141 |
127 131 129 129 74 130 137
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∘r ≤ 𝑑 ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
142 |
141
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ¬ 𝑢 ∘r ≤ 𝑑 ↔ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
143 |
|
rexnal |
⊢ ( ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ↔ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
144 |
142 143
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ¬ 𝑢 ∘r ≤ 𝑑 ↔ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
145 |
140 144
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ↔ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
146 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
147 |
125
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
148 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
149 |
147 148
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
150 |
149
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
151 |
150
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
152 |
|
nn0nlt0 |
⊢ ( ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 → ¬ ( 𝑑 ‘ 𝑋 ) < 0 ) |
153 |
146 152
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( 𝑑 ‘ 𝑋 ) < 0 ) |
154 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
155 |
154
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
156 |
155
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
157 |
156
|
addridd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ‘ 𝑖 ) + 0 ) = ( 𝑑 ‘ 𝑖 ) ) |
158 |
157
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + 0 ) ↔ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
159 |
158
|
biimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + 0 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
160 |
|
ifnefalse |
⊢ ( 𝑖 ≠ 𝑋 → if ( 𝑖 = 𝑋 , 1 , 0 ) = 0 ) |
161 |
160
|
oveq2d |
⊢ ( 𝑖 ≠ 𝑋 → ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑 ‘ 𝑖 ) + 0 ) ) |
162 |
161
|
breq2d |
⊢ ( 𝑖 ≠ 𝑋 → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ↔ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + 0 ) ) ) |
163 |
162
|
imbi1d |
⊢ ( 𝑖 ≠ 𝑋 → ( ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ↔ ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + 0 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
164 |
159 163
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑖 ≠ 𝑋 → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
165 |
164
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
166 |
165
|
impancom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) ∧ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( 𝑖 ≠ 𝑋 → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
167 |
166
|
necon1bd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) ∧ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → 𝑖 = 𝑋 ) ) |
168 |
167
|
ancrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) ∧ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
169 |
168
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
170 |
169
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
171 |
170
|
anim1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) → ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
172 |
171
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
173 |
|
rexim |
⊢ ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ∃ 𝑖 ∈ 𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ) |
174 |
173
|
imp |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) → ∃ 𝑖 ∈ 𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
175 |
|
fveq2 |
⊢ ( 𝑖 = 𝑋 → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑋 ) ) |
176 |
|
fveq2 |
⊢ ( 𝑖 = 𝑋 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑋 ) ) |
177 |
175 176
|
breq12d |
⊢ ( 𝑖 = 𝑋 → ( ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ↔ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) ) |
178 |
177
|
notbid |
⊢ ( 𝑖 = 𝑋 → ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ↔ ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) ) |
179 |
178
|
ceqsrexbv |
⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ↔ ( 𝑋 ∈ 𝐼 ∧ ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) ) |
180 |
179
|
simprbi |
⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) → ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) |
181 |
174 180
|
syl |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) → ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) |
182 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
183 |
182
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℝ ) |
184 |
150
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℝ ) |
185 |
183 184
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ↔ ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) ) |
186 |
185
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ¬ ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) → ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ) |
187 |
181 186
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) → ( 𝑖 = 𝑋 ∧ ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ) |
188 |
172 187
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ) |
189 |
|
breq2 |
⊢ ( ( 𝑢 ‘ 𝑋 ) = 0 → ( ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ↔ ( 𝑑 ‘ 𝑋 ) < 0 ) ) |
190 |
188 189
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( 𝑢 ‘ 𝑋 ) = 0 → ( 𝑑 ‘ 𝑋 ) < 0 ) ) |
191 |
153 190
|
mtod |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( 𝑢 ‘ 𝑋 ) = 0 ) |
192 |
191
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ≠ 0 ) |
193 |
|
elnnne0 |
⊢ ( ( 𝑢 ‘ 𝑋 ) ∈ ℕ ↔ ( ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ∧ ( 𝑢 ‘ 𝑋 ) ≠ 0 ) ) |
194 |
151 192 193
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ ) |
195 |
|
elfzo0 |
⊢ ( ( 𝑑 ‘ 𝑋 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ↔ ( ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ∧ ( 𝑢 ‘ 𝑋 ) ∈ ℕ ∧ ( 𝑑 ‘ 𝑋 ) < ( 𝑢 ‘ 𝑋 ) ) ) |
196 |
146 194 188 195
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑑 ‘ 𝑋 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ) |
197 |
|
fzostep1 |
⊢ ( ( 𝑑 ‘ 𝑋 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ∨ ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) ) |
198 |
196 197
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ∨ ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) ) |
199 |
151
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℝ ) |
200 |
35
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
201 |
200
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
202 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
203 |
|
iftrue |
⊢ ( 𝑖 = 𝑋 → if ( 𝑖 = 𝑋 , 1 , 0 ) = 1 ) |
204 |
176 203
|
oveq12d |
⊢ ( 𝑖 = 𝑋 → ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) |
205 |
175 204
|
breq12d |
⊢ ( 𝑖 = 𝑋 → ( ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ↔ ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) ) |
206 |
205
|
rspcv |
⊢ ( 𝑋 ∈ 𝐼 → ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) ) |
207 |
202 206
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) → ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) ) |
208 |
207
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) |
209 |
208
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( 𝑢 ‘ 𝑋 ) ≤ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) |
210 |
199 201 209
|
lensymd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( ( 𝑑 ‘ 𝑋 ) + 1 ) < ( 𝑢 ‘ 𝑋 ) ) |
211 |
210
|
intn3an3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ∧ ( 𝑢 ‘ 𝑋 ) ∈ ℕ ∧ ( ( 𝑑 ‘ 𝑋 ) + 1 ) < ( 𝑢 ‘ 𝑋 ) ) ) |
212 |
|
elfzo0 |
⊢ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ↔ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ∧ ( 𝑢 ‘ 𝑋 ) ∈ ℕ ∧ ( ( 𝑑 ‘ 𝑋 ) + 1 ) < ( 𝑢 ‘ 𝑋 ) ) ) |
213 |
211 212
|
sylnibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ¬ ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ( 0 ..^ ( 𝑢 ‘ 𝑋 ) ) ) |
214 |
198 213
|
orcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ∧ ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
215 |
145 214
|
sylbida |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
216 |
215
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑢 ∘r ≤ 𝑑 ) ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
217 |
124 216
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ 𝑘 ∘r ≤ 𝑑 ) } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
218 |
119 217
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
219 |
218
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
220 |
219
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
221 |
220
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
222 |
18
|
psrbaglefi |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∈ Fin ) |
223 |
222
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∈ Fin ) |
224 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑅 ∈ Mnd ) |
225 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
226 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑅 ∈ Ring ) |
227 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
228 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
229 |
228
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ) |
230 |
227 229
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ) |
231 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
232 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
233 |
232
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
234 |
233
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
235 |
227 125
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑢 : 𝐼 ⟶ ℕ0 ) |
236 |
235
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
237 |
236
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℕ0 ) |
238 |
237
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℂ ) |
239 |
58
|
nn0cni |
⊢ if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ |
240 |
239
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
241 |
234 238 240
|
subadd23d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑 ‘ 𝑖 ) + ( if ( 𝑖 = 𝑋 , 1 , 0 ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
242 |
234 240 238
|
addsubassd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) = ( ( 𝑑 ‘ 𝑖 ) + ( if ( 𝑖 = 𝑋 , 1 , 0 ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
243 |
241 242
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) |
244 |
243
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
245 |
|
eqid |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } |
246 |
18 245
|
psrbagconcl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
247 |
|
elrabi |
⊢ ( ( 𝑑 ∘f − 𝑢 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
248 |
246 247
|
syl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
249 |
248
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
250 |
18
|
psrbagf |
⊢ ( ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑑 ∘f − 𝑢 ) : 𝐼 ⟶ ℕ0 ) |
251 |
249 250
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) : 𝐼 ⟶ ℕ0 ) |
252 |
251
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑢 ) Fn 𝐼 ) |
253 |
71
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
254 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐼 ∈ V ) |
255 |
232
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑑 Fn 𝐼 ) |
256 |
236
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑢 Fn 𝐼 ) |
257 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
258 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
259 |
255 256 254 254 74 257 258
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) ) |
260 |
80
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
261 |
252 253 254 254 74 259 260
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) − ( 𝑢 ‘ 𝑖 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
262 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
263 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
264 |
262 263 22
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
265 |
264 90
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
266 |
265
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
267 |
255 253 254 254 74 257 260
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
268 |
266 256 254 254 74 267 258
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
269 |
244 261 268
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) |
270 |
18
|
psrbagaddcl |
⊢ ( ( ( 𝑑 ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
271 |
249 263 270
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
272 |
269 271
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
273 |
231 272
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) |
274 |
9 37 226 230 273
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
275 |
9 26 224 225 274
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
276 |
|
disjdifr |
⊢ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∩ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = ∅ |
277 |
276
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∩ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = ∅ ) |
278 |
|
simpl |
⊢ ( ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) → 𝑘 ∘r ≤ 𝑑 ) |
279 |
278
|
a1i |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) → 𝑘 ∘r ≤ 𝑑 ) ) |
280 |
279
|
ss2rabi |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } |
281 |
280
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
282 |
|
undifr |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↔ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
283 |
281 282
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
284 |
283
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } = ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∪ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
285 |
9 10 13 223 275 277 284
|
gsummptfidmsplit |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
286 |
|
eldifi |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
287 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑋 ∈ 𝐼 ) |
288 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑋 ) = ( 𝑑 ‘ 𝑋 ) ) |
289 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑋 ) = ( 𝑢 ‘ 𝑋 ) ) |
290 |
255 256 254 254 74 288 289
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
291 |
287 290
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
292 |
286 291
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
293 |
292
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) = ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) ) |
294 |
236 287
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
295 |
286 294
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
296 |
295
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℂ ) |
297 |
33
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℂ ) |
298 |
297
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( 𝑑 ‘ 𝑋 ) ∈ ℂ ) |
299 |
296 298
|
pncan3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) = ( 𝑑 ‘ 𝑋 ) ) |
300 |
293 299
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) = ( 𝑑 ‘ 𝑋 ) ) |
301 |
300
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) + 1 ) = ( ( 𝑑 ‘ 𝑋 ) + 1 ) ) |
302 |
251 287
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ∈ ℕ0 ) |
303 |
286 302
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ∈ ℕ0 ) |
304 |
303
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ∈ ℂ ) |
305 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → 1 ∈ ℂ ) |
306 |
296 304 305
|
addassd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢 ‘ 𝑋 ) + ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) + 1 ) = ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ) |
307 |
301 306
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ) |
308 |
307
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
309 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → 𝑅 ∈ Mnd ) |
310 |
|
peano2nn0 |
⊢ ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ∈ ℕ0 → ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
311 |
302 310
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
312 |
286 311
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
313 |
286 274
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
314 |
9 26 10
|
mulgnn0dir |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ∧ ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℕ0 ∧ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
315 |
309 295 312 313 314
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑢 ‘ 𝑋 ) + ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
316 |
308 315
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
317 |
316
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
318 |
317
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
319 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
320 |
223 319
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∈ Fin ) |
321 |
9 26 224 294 274
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
322 |
286 321
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
323 |
9 26 224 311 274
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
324 |
286 323
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) → ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
325 |
|
eqid |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
326 |
|
eqid |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
327 |
9 10 13 320 322 324 325 326
|
gsummptfidmadd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ( +g ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
328 |
318 327
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
329 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝑋 ∈ 𝐼 ) |
330 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝑑 Fn 𝐼 ) |
331 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
332 |
331 126
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → 𝑢 Fn 𝐼 ) |
333 |
332
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝑢 Fn 𝐼 ) |
334 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → 𝐼 ∈ V ) |
335 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑋 ) = ( 𝑑 ‘ 𝑋 ) ) |
336 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑋 ) = ( 𝑢 ‘ 𝑋 ) ) |
337 |
330 333 334 334 74 335 336
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
338 |
329 337
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) = ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) ) |
339 |
|
fveq1 |
⊢ ( 𝑘 = 𝑢 → ( 𝑘 ‘ 𝑋 ) = ( 𝑢 ‘ 𝑋 ) ) |
340 |
339
|
eqeq1d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑘 ‘ 𝑋 ) = 0 ↔ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
341 |
121 340
|
anbi12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ↔ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) |
342 |
341
|
elrab |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↔ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) |
343 |
342
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
344 |
343
|
simprd |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → ( 𝑢 ‘ 𝑋 ) = 0 ) |
345 |
344
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( 𝑢 ‘ 𝑋 ) = 0 ) |
346 |
345
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( 𝑑 ‘ 𝑋 ) − ( 𝑢 ‘ 𝑋 ) ) = ( ( 𝑑 ‘ 𝑋 ) − 0 ) ) |
347 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
348 |
347
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℂ ) |
349 |
348
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( 𝑑 ‘ 𝑋 ) − 0 ) = ( 𝑑 ‘ 𝑋 ) ) |
350 |
338 346 349
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( 𝑑 ‘ 𝑋 ) = ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) ) |
351 |
350
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( 𝑑 ‘ 𝑋 ) + 1 ) = ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ) |
352 |
351
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
353 |
352
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
354 |
353
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
355 |
328 354
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) = ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
356 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Grp ) |
357 |
108
|
rabex |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∈ V |
358 |
357
|
difexi |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∈ V |
359 |
358
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∈ V ) |
360 |
322
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⟶ ( Base ‘ 𝑅 ) ) |
361 |
|
ovex |
⊢ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ V |
362 |
361 325
|
fnmpti |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) |
363 |
362
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
364 |
363 320 115
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
365 |
9 106 13 359 360 364
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
366 |
324
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⟶ ( Base ‘ 𝑅 ) ) |
367 |
|
ovex |
⊢ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ V |
368 |
367 326
|
fnmpti |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) |
369 |
368
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
370 |
369 320 115
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
371 |
9 106 13 359 366 370
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
372 |
108
|
rabex |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ∈ V |
373 |
372
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ∈ V ) |
374 |
280
|
sseli |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } → 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
375 |
374 323
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) → ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
376 |
375
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) : { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ⟶ ( Base ‘ 𝑅 ) ) |
377 |
|
eqid |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
378 |
367 377
|
fnmpti |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } |
379 |
378
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) |
380 |
223 281
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ∈ Fin ) |
381 |
379 380 115
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
382 |
9 106 13 373 376 381
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
383 |
9 10 356 365 371 382
|
grpassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) |
384 |
285 355 383
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) |
385 |
221 384
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
386 |
105 117 385
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
387 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐹 ∈ 𝐵 ) |
388 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐺 ∈ 𝐵 ) |
389 |
1 2 37 4 18 387 388 23
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
390 |
389
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
391 |
109
|
difexi |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∈ V |
392 |
391
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∈ V ) |
393 |
|
eldifi |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
394 |
41 125
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 : 𝐼 ⟶ ℕ0 ) |
395 |
394
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
396 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → 𝑋 ∈ 𝐼 ) |
397 |
395 396
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
398 |
9 26 29 397 52
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
399 |
393 398
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
400 |
399
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) : ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ⟶ ( Base ‘ 𝑅 ) ) |
401 |
|
eqid |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
402 |
361 401
|
fnmpti |
⊢ ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
403 |
402
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
404 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
405 |
25 404
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∈ Fin ) |
406 |
403 405 115
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
407 |
9 106 13 392 400 406
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
408 |
9 10 356 371 382
|
grpcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
409 |
9 10 356 407 365 408
|
grpassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
410 |
386 390 409
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) |
411 |
410
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
412 |
1 2 4 11 7 8
|
psrmulcl |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
413 |
1 2 18 6 412
|
psdval |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 · 𝐺 ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑑 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 · 𝐺 ) ‘ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
414 |
27
|
grpmgmd |
⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
415 |
1 2 414 6 7
|
psdcl |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ) |
416 |
1 2 4 11 415 8
|
psrmulcl |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 ) |
417 |
1 2 414 6 8
|
psdcl |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ∈ 𝐵 ) |
418 |
1 2 4 11 7 417
|
psrmulcl |
⊢ ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ∈ 𝐵 ) |
419 |
1 2 10 3 416 418
|
psradd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∘f ( +g ‘ 𝑅 ) ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) ) |
420 |
1 9 18 2 416
|
psrelbas |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
421 |
420
|
ffnd |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
422 |
1 9 18 2 418
|
psrelbas |
⊢ ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
423 |
422
|
ffnd |
⊢ ( 𝜑 → ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
424 |
108
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
425 |
|
inidm |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∩ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
426 |
415
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ) |
427 |
1 2 37 4 18 426 388 14
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ‘ 𝑑 ) = ( 𝑅 Σg ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ) ) |
428 |
357
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∈ V ) |
429 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑅 ∈ Ring ) |
430 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
431 |
1 9 18 2 415
|
psrelbas |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
432 |
431
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
433 |
432
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
434 |
430 433
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
435 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
436 |
18 245
|
psrbagconcl |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑏 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
437 |
436
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑏 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
438 |
|
elrabi |
⊢ ( ( 𝑑 ∘f − 𝑏 ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → ( 𝑑 ∘f − 𝑏 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
439 |
437 438
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑑 ∘f − 𝑏 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
440 |
435 439
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ∈ ( Base ‘ 𝑅 ) ) |
441 |
9 37 429 434 440
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
442 |
441
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) : { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⟶ ( Base ‘ 𝑅 ) ) |
443 |
|
ovex |
⊢ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ∈ V |
444 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) = ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) |
445 |
443 444
|
fnmpti |
⊢ ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } |
446 |
445
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
447 |
446 223 115
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
448 |
|
eqid |
⊢ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
449 |
|
df-of |
⊢ ∘f + = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) |
450 |
|
vex |
⊢ 𝑢 ∈ V |
451 |
450
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑢 ∈ V ) |
452 |
|
ssv |
⊢ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⊆ V |
453 |
452
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ⊆ V ) |
454 |
|
ssv |
⊢ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ⊆ V |
455 |
454
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ⊆ V ) |
456 |
449 451 453 455
|
elimampo |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↔ ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) ) |
457 |
456
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) |
458 |
|
elrabi |
⊢ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑚 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
459 |
18
|
psrbagf |
⊢ ( 𝑚 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑚 : 𝐼 ⟶ ℕ0 ) |
460 |
459
|
ffund |
⊢ ( 𝑚 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → Fun 𝑚 ) |
461 |
458 460
|
syl |
⊢ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → Fun 𝑚 ) |
462 |
461
|
funfnd |
⊢ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑚 Fn dom 𝑚 ) |
463 |
462
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑚 Fn dom 𝑚 ) |
464 |
|
velsn |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
465 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
466 |
|
funeq |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( Fun 𝑛 ↔ Fun ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
467 |
465 466
|
mpbiri |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → Fun 𝑛 ) |
468 |
467
|
funfnd |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → 𝑛 Fn dom 𝑛 ) |
469 |
464 468
|
sylbi |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → 𝑛 Fn dom 𝑛 ) |
470 |
469
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑛 Fn dom 𝑛 ) |
471 |
|
vex |
⊢ 𝑚 ∈ V |
472 |
471
|
dmex |
⊢ dom 𝑚 ∈ V |
473 |
472
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → dom 𝑚 ∈ V ) |
474 |
|
vex |
⊢ 𝑛 ∈ V |
475 |
474
|
dmex |
⊢ dom 𝑛 ∈ V |
476 |
475
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → dom 𝑛 ∈ V ) |
477 |
|
eqid |
⊢ ( dom 𝑚 ∩ dom 𝑛 ) = ( dom 𝑚 ∩ dom 𝑛 ) |
478 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑜 ∈ dom 𝑚 ) → ( 𝑚 ‘ 𝑜 ) = ( 𝑚 ‘ 𝑜 ) ) |
479 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑜 ∈ dom 𝑛 ) → ( 𝑛 ‘ 𝑜 ) = ( 𝑛 ‘ 𝑜 ) ) |
480 |
463 470 473 476 477 478 479
|
offval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚 ∘f + 𝑛 ) = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) |
481 |
480
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) ) |
482 |
|
elsni |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
483 |
482
|
oveq2d |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → ( 𝑚 ∘f + 𝑛 ) = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
484 |
483
|
eqeq2d |
⊢ ( 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
485 |
484
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
486 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐼 ∈ V ) |
487 |
458 459
|
syl |
⊢ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑚 : 𝐼 ⟶ ℕ0 ) |
488 |
487
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 : 𝐼 ⟶ ℕ0 ) |
489 |
133
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
490 |
|
nn0cn |
⊢ ( 𝑞 ∈ ℕ0 → 𝑞 ∈ ℂ ) |
491 |
|
nn0cn |
⊢ ( 𝑟 ∈ ℕ0 → 𝑟 ∈ ℂ ) |
492 |
|
nn0cn |
⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℂ ) |
493 |
|
addsubass |
⊢ ( ( 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟 − 𝑠 ) ) ) |
494 |
490 491 492 493
|
syl3an |
⊢ ( ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟 − 𝑠 ) ) ) |
495 |
494
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟 − 𝑠 ) ) ) |
496 |
486 488 489 489 495
|
caofass |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑚 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
497 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
498 |
58
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℕ0 ) |
499 |
70 78 497 498
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
500 |
135 135 17 17 74 499 499
|
offval |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
501 |
500
|
oveq2d |
⊢ ( 𝜑 → ( 𝑚 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) ) |
502 |
501
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) ) |
503 |
239
|
subidi |
⊢ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) = 0 |
504 |
503
|
mpteq2i |
⊢ ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ 0 ) |
505 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑖 ∈ 𝐼 ↦ 0 ) |
506 |
504 505
|
eqtr4i |
⊢ ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝐼 × { 0 } ) |
507 |
506
|
oveq2i |
⊢ ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑚 ∘f + ( 𝐼 × { 0 } ) ) |
508 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 0 ∈ ℤ ) |
509 |
490
|
addridd |
⊢ ( 𝑞 ∈ ℕ0 → ( 𝑞 + 0 ) = 𝑞 ) |
510 |
509
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑞 ∈ ℕ0 ) → ( 𝑞 + 0 ) = 𝑞 ) |
511 |
486 488 508 510
|
caofid0r |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝐼 × { 0 } ) ) = 𝑚 ) |
512 |
507 511
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑚 ) |
513 |
496 502 512
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑚 ) |
514 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
515 |
513 514
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
516 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
517 |
516
|
eleq1d |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
518 |
515 517
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
519 |
518
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
520 |
485 519
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
521 |
481 520
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
522 |
521
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
523 |
457 522
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
524 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
525 |
17
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V ) |
526 |
|
elsng |
⊢ ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
527 |
525 526
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ↔ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
528 |
70 527
|
mpbiri |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) |
529 |
528
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) |
530 |
449
|
mpofun |
⊢ Fun ∘f + |
531 |
530
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → Fun ∘f + ) |
532 |
|
xpss |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ⊆ ( V × V ) |
533 |
472
|
inex1 |
⊢ ( dom 𝑚 ∩ dom 𝑛 ) ∈ V |
534 |
533
|
mptex |
⊢ ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ∈ V |
535 |
534
|
rgen2w |
⊢ ∀ 𝑚 ∈ V ∀ 𝑛 ∈ V ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ∈ V |
536 |
449
|
dmmpoga |
⊢ ( ∀ 𝑚 ∈ V ∀ 𝑛 ∈ V ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ∈ V → dom ∘f + = ( V × V ) ) |
537 |
535 536
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → dom ∘f + = ( V × V ) ) |
538 |
532 537
|
sseqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ⊆ dom ∘f + ) |
539 |
524 529 531 538
|
elovimad |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) |
540 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝐼 ∈ V ) |
541 |
|
elrabi |
⊢ ( 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑣 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
542 |
18
|
psrbagf |
⊢ ( 𝑣 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑣 : 𝐼 ⟶ ℕ0 ) |
543 |
541 542
|
syl |
⊢ ( 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → 𝑣 : 𝐼 ⟶ ℕ0 ) |
544 |
543
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑣 : 𝐼 ⟶ ℕ0 ) |
545 |
133
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
546 |
494
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ ( 𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ) → ( ( 𝑞 + 𝑟 ) − 𝑠 ) = ( 𝑞 + ( 𝑟 − 𝑠 ) ) ) |
547 |
540 544 545 545 546
|
caofass |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑣 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
548 |
135
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
549 |
80
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
550 |
548 548 540 540 74 549 549
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
551 |
550
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑣 ∘f + ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑣 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) ) |
552 |
506
|
oveq2i |
⊢ ( 𝑣 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑣 ∘f + ( 𝐼 × { 0 } ) ) |
553 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 0 ∈ ℤ ) |
554 |
|
nn0cn |
⊢ ( 𝑝 ∈ ℕ0 → 𝑝 ∈ ℂ ) |
555 |
554
|
addridd |
⊢ ( 𝑝 ∈ ℕ0 → ( 𝑝 + 0 ) = 𝑝 ) |
556 |
555
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑝 ∈ ℕ0 ) → ( 𝑝 + 0 ) = 𝑝 ) |
557 |
540 544 553 556
|
caofid0r |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑣 ∘f + ( 𝐼 × { 0 } ) ) = 𝑣 ) |
558 |
552 557
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑣 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑣 ) |
559 |
547 551 558
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑣 = ( ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
560 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
561 |
560
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑣 = ( ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
562 |
559 561
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
563 |
20
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
564 |
18
|
psrbagaddcl |
⊢ ( ( 𝑚 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
565 |
458 563 564
|
syl2an2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
566 |
18
|
psrbagf |
⊢ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
567 |
565 566
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
568 |
567
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) |
569 |
|
feq1 |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 : 𝐼 ⟶ ℕ0 ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) : 𝐼 ⟶ ℕ0 ) ) |
570 |
568 569
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) ) |
571 |
485 570
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) → 𝑢 : 𝐼 ⟶ ℕ0 ) ) |
572 |
481 571
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) ) |
573 |
572
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) ) |
574 |
457 573
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
575 |
574
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
576 |
575
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℕ0 ) |
577 |
576
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℂ ) |
578 |
239
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
579 |
577 578
|
npcand |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢 ‘ 𝑖 ) ) |
580 |
579
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑢 ‘ 𝑖 ) ) ) |
581 |
575
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑢 Fn 𝐼 ) |
582 |
581 548 540 540 74
|
offn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
583 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
584 |
581 548 540 540 74 583 549
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
585 |
582 548 540 540 74 584 549
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
586 |
575
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑢 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑢 ‘ 𝑖 ) ) ) |
587 |
580 585 586
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → 𝑢 = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
588 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
589 |
588
|
eqeq2d |
⊢ ( 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
590 |
587 589
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
591 |
562 590
|
impbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∧ 𝑣 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) → ( 𝑢 = ( 𝑣 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑣 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
592 |
448 523 539 591
|
f1o2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) : ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) –1-1-onto→ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
593 |
9 106 13 428 442 447 592
|
gsumf1o |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
594 |
555
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑝 ∈ ℕ0 ) → ( 𝑝 + 0 ) = 𝑝 ) |
595 |
486 488 508 594
|
caofid0r |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝐼 × { 0 } ) ) = 𝑚 ) |
596 |
507 595
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 = 𝑋 , 1 , 0 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = 𝑚 ) |
597 |
496 502 596
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑚 ) |
598 |
597 514
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
599 |
598 517
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
600 |
599
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
601 |
485 600
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
602 |
481 601
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
603 |
602
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) |
604 |
457 603
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
605 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
606 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) = ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ) |
607 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) = ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
608 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑑 ∘f − 𝑏 ) = ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
609 |
608
|
fveq2d |
⊢ ( 𝑏 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) = ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) |
610 |
607 609
|
oveq12d |
⊢ ( 𝑏 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
611 |
604 605 606 610
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) ) |
612 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑋 ∈ 𝐼 ) |
613 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐹 ∈ 𝐵 ) |
614 |
|
elrabi |
⊢ ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
615 |
604 614
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
616 |
1 2 18 612 613 615
|
psdcoef |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) |
617 |
574
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 Fn 𝐼 ) |
618 |
133
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
619 |
618
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
620 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐼 ∈ V ) |
621 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑋 ) = ( 𝑢 ‘ 𝑋 ) ) |
622 |
|
iftrue |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , 1 , 0 ) = 1 ) |
623 |
|
1ex |
⊢ 1 ∈ V |
624 |
622 70 623
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐼 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
625 |
624
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
626 |
617 619 620 620 74 621 625
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑢 ‘ 𝑋 ) − 1 ) ) |
627 |
612 626
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑢 ‘ 𝑋 ) − 1 ) ) |
628 |
627
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) = ( ( ( 𝑢 ‘ 𝑋 ) − 1 ) + 1 ) ) |
629 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
630 |
629
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ℕ0 ⊆ ℂ ) |
631 |
574 630
|
fssd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 : 𝐼 ⟶ ℂ ) |
632 |
631 612
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℂ ) |
633 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 1 ∈ ℂ ) |
634 |
632 633
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢 ‘ 𝑋 ) − 1 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
635 |
628 634
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) = ( 𝑢 ‘ 𝑋 ) ) |
636 |
617 619 620 620 74
|
offn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
637 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
638 |
80
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
639 |
617 619 620 620 74 637 638
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
640 |
574
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℕ0 ) |
641 |
640
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℂ ) |
642 |
239
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
643 |
641 642
|
npcand |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢 ‘ 𝑖 ) ) |
644 |
620 636 619 617 639 638 643
|
offveq |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 𝑢 ) |
645 |
644
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐹 ‘ ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐹 ‘ 𝑢 ) ) |
646 |
635 645
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ) |
647 |
616 646
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ) |
648 |
30
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
649 |
648
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
650 |
649
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
651 |
650 641 642
|
subsub3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ‘ 𝑖 ) − ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) |
652 |
651
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) − ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
653 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑑 Fn 𝐼 ) |
654 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
655 |
653 636 620 620 74 654 639
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) − ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) ) |
656 |
653 619 620 620 74
|
offn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
657 |
653 619 620 620 74 654 638
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
658 |
656 617 620 620 74 657 637
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) − ( 𝑢 ‘ 𝑖 ) ) ) ) |
659 |
652 655 658
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) |
660 |
659
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) |
661 |
647 660
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) |
662 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑅 ∈ Ring ) |
663 |
574 612
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
664 |
663
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑢 ‘ 𝑋 ) ∈ ℤ ) |
665 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
666 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
667 |
20
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
668 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
669 |
|
eqid |
⊢ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } = { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } |
670 |
18 245 669
|
psrbagleadd1 |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
671 |
666 667 668 670
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
672 |
|
eleq1 |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
673 |
671 672
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
674 |
485 673
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
675 |
481 674
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) ∧ ( 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
676 |
675
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) ) |
677 |
457 676
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
678 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
679 |
677 678
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
680 |
665 679
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ) |
681 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝐺 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
682 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
683 |
18 669
|
psrbagconcl |
⊢ ( ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑢 ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
684 |
682 677 683
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
685 |
|
elrabi |
⊢ ( ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { 𝑙 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑙 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
686 |
684 685
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
687 |
681 686
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) |
688 |
9 26 37
|
mulgass2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑢 ‘ 𝑋 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
689 |
662 664 680 687 688
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( 𝐹 ‘ 𝑢 ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
690 |
661 689
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
691 |
690
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
692 |
611 691
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
693 |
692
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
694 |
|
snex |
⊢ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ V |
695 |
357 694
|
xpex |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∈ V |
696 |
695
|
funimaex |
⊢ ( Fun ∘f + → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∈ V ) |
697 |
530 696
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ∈ V ) |
698 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → 𝑅 ∈ Mnd ) |
699 |
9 37 662 680 687
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
700 |
9 26 698 663 699
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ) → ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
701 |
|
eqid |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
702 |
361 701
|
fnmpti |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } |
703 |
702
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) Fn { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
704 |
703 25 115
|
fndmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
705 |
462
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → 𝑚 Fn dom 𝑚 ) |
706 |
469
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → 𝑛 Fn dom 𝑛 ) |
707 |
472
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → dom 𝑚 ∈ V ) |
708 |
475
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → dom 𝑛 ∈ V ) |
709 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∧ 𝑜 ∈ dom 𝑚 ) → ( 𝑚 ‘ 𝑜 ) = ( 𝑚 ‘ 𝑜 ) ) |
710 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ∧ 𝑜 ∈ dom 𝑛 ) → ( 𝑛 ‘ 𝑜 ) = ( 𝑛 ‘ 𝑜 ) ) |
711 |
705 706 707 708 477 709 710
|
offval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → ( 𝑚 ∘f + 𝑛 ) = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) |
712 |
711
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) ) |
713 |
712
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ) ) |
714 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
715 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( 𝑚 ∘f + 𝑛 ) = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
716 |
715
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
717 |
716
|
rexsng |
⊢ ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
718 |
714 717
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑚 ∘f + 𝑛 ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
719 |
713 718
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ↔ 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
720 |
719
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∃ 𝑛 ∈ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } 𝑢 = ( 𝑜 ∈ ( dom 𝑚 ∩ dom 𝑛 ) ↦ ( ( 𝑚 ‘ 𝑜 ) + ( 𝑛 ‘ 𝑜 ) ) ) ↔ ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
721 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
722 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘 ∘r ≤ 𝑑 ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ) ) |
723 |
|
fveq1 |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘 ‘ 𝑋 ) = ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) ) |
724 |
723
|
eqeq1d |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘 ‘ 𝑋 ) = 0 ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) |
725 |
722 724
|
anbi12d |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) |
726 |
725
|
notbid |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ↔ ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) |
727 |
721 726
|
anbi12d |
⊢ ( 𝑘 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) ) |
728 |
458 714 564
|
syl2an2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
729 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
730 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
731 |
18 245 46
|
psrbagleadd1 |
⊢ ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
732 |
729 714 730 731
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
733 |
721
|
elrab |
⊢ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ↔ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
734 |
733
|
simprbi |
⊢ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
735 |
732 734
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
736 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑋 ∈ 𝐼 ) |
737 |
487
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 : 𝐼 ⟶ ℕ0 ) |
738 |
737
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝑚 Fn 𝐼 ) |
739 |
135
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
740 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐼 ∈ V ) |
741 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑚 ‘ 𝑋 ) = ( 𝑚 ‘ 𝑋 ) ) |
742 |
624
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
743 |
738 739 740 740 74 741 742
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑚 ‘ 𝑋 ) + 1 ) ) |
744 |
736 743
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑚 ‘ 𝑋 ) + 1 ) ) |
745 |
737 736
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ‘ 𝑋 ) ∈ ℕ0 ) |
746 |
|
nn0p1nn |
⊢ ( ( 𝑚 ‘ 𝑋 ) ∈ ℕ0 → ( ( 𝑚 ‘ 𝑋 ) + 1 ) ∈ ℕ ) |
747 |
745 746
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ‘ 𝑋 ) + 1 ) ∈ ℕ ) |
748 |
744 747
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) ∈ ℕ ) |
749 |
748
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) ≠ 0 ) |
750 |
749
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) |
751 |
750
|
intnand |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) |
752 |
735 751
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ∧ ( ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = 0 ) ) ) |
753 |
727 728 752
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) |
754 |
|
eleq1 |
⊢ ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ↔ ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ) |
755 |
753 754
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ) |
756 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑘 ∘r ≤ 𝑑 ↔ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ) ) |
757 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
758 |
757
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
759 |
133
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
760 |
757 125
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → 𝑢 : 𝐼 ⟶ ℕ0 ) |
761 |
760
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 : 𝐼 ⟶ ℕ0 ) |
762 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑋 ∈ 𝐼 ) |
763 |
761 762
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ0 ) |
764 |
341
|
notbid |
⊢ ( 𝑘 = 𝑢 → ( ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ↔ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) |
765 |
120 764
|
anbi12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) ↔ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) ) |
766 |
765
|
elrab |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ↔ ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) ) |
767 |
766
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) ) |
768 |
767
|
simpld |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
769 |
768
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
770 |
769
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
771 |
757 126
|
syl |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → 𝑢 Fn 𝐼 ) |
772 |
771
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 Fn 𝐼 ) |
773 |
772
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑢 Fn 𝐼 ) |
774 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
775 |
90
|
ffnd |
⊢ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
776 |
774 775
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
777 |
776
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
778 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝐼 ∈ V ) |
779 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
780 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) |
781 |
773 777 778 778 74 779 780
|
ofrfval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) ) |
782 |
770 781
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) |
783 |
782
|
r19.21bi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) |
784 |
783
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) ) |
785 |
67
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) → 𝑑 Fn 𝐼 ) |
786 |
71
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
787 |
17
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) → 𝐼 ∈ V ) |
788 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
789 |
80
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
790 |
785 786 787 787 74 788 789
|
ofval |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ≠ 𝑋 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
791 |
790
|
an32s |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
792 |
160
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) = 0 ) |
793 |
792
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( ( 𝑑 ‘ 𝑖 ) + 0 ) ) |
794 |
31
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
795 |
794
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
796 |
795
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
797 |
796
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℂ ) |
798 |
797
|
addridd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑑 ‘ 𝑖 ) + 0 ) = ( 𝑑 ‘ 𝑖 ) ) |
799 |
791 793 798
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
800 |
784 799
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ≠ 𝑋 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
801 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑢 ‘ 𝑋 ) = 0 ) |
802 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
803 |
802 762
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑑 ‘ 𝑋 ) ∈ ℕ0 ) |
804 |
803
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 0 ≤ ( 𝑑 ‘ 𝑋 ) ) |
805 |
804
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 0 ≤ ( 𝑑 ‘ 𝑋 ) ) |
806 |
801 805
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) |
807 |
806
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑋 ) ≤ ( 𝑑 ‘ 𝑋 ) ) |
808 |
177 800 807
|
pm2.61ne |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
809 |
808
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
810 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑑 Fn 𝐼 ) |
811 |
810
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑑 Fn 𝐼 ) |
812 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
813 |
773 811 778 778 74 779 812
|
ofrfval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → ( 𝑢 ∘r ≤ 𝑑 ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
814 |
809 813
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) → 𝑢 ∘r ≤ 𝑑 ) |
815 |
814
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ‘ 𝑋 ) = 0 → 𝑢 ∘r ≤ 𝑑 ) ) |
816 |
767
|
simprd |
⊢ ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } → ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
817 |
816
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
818 |
|
imnan |
⊢ ( ( 𝑢 ∘r ≤ 𝑑 → ¬ ( 𝑢 ‘ 𝑋 ) = 0 ) ↔ ¬ ( 𝑢 ∘r ≤ 𝑑 ∧ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
819 |
817 818
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘r ≤ 𝑑 → ¬ ( 𝑢 ‘ 𝑋 ) = 0 ) ) |
820 |
819
|
con2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ‘ 𝑋 ) = 0 → ¬ 𝑢 ∘r ≤ 𝑑 ) ) |
821 |
815 820
|
pm2.65d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ¬ ( 𝑢 ‘ 𝑋 ) = 0 ) |
822 |
821
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ‘ 𝑋 ) ≠ 0 ) |
823 |
763 822 193
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ‘ 𝑋 ) ∈ ℕ ) |
824 |
823
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 1 ≤ ( 𝑢 ‘ 𝑋 ) ) |
825 |
824
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → 1 ≤ ( 𝑢 ‘ 𝑋 ) ) |
826 |
175
|
breq2d |
⊢ ( 𝑖 = 𝑋 → ( 1 ≤ ( 𝑢 ‘ 𝑖 ) ↔ 1 ≤ ( 𝑢 ‘ 𝑋 ) ) ) |
827 |
825 826
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑖 = 𝑋 → 1 ≤ ( 𝑢 ‘ 𝑖 ) ) ) |
828 |
827
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 = 𝑋 ) → 1 ≤ ( 𝑢 ‘ 𝑖 ) ) |
829 |
761
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℕ0 ) |
830 |
829
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → 0 ≤ ( 𝑢 ‘ 𝑖 ) ) |
831 |
830
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 = 𝑋 ) → 0 ≤ ( 𝑢 ‘ 𝑖 ) ) |
832 |
828 831
|
ifpimpda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → if- ( 𝑖 = 𝑋 , 1 ≤ ( 𝑢 ‘ 𝑖 ) , 0 ≤ ( 𝑢 ‘ 𝑖 ) ) ) |
833 |
|
brif1 |
⊢ ( if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢 ‘ 𝑖 ) ↔ if- ( 𝑖 = 𝑋 , 1 ≤ ( 𝑢 ‘ 𝑖 ) , 0 ≤ ( 𝑢 ‘ 𝑖 ) ) ) |
834 |
832 833
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢 ‘ 𝑖 ) ) |
835 |
834
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ∀ 𝑖 ∈ 𝐼 if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢 ‘ 𝑖 ) ) |
836 |
71
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
837 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝐼 ∈ V ) |
838 |
80
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝑋 , 1 , 0 ) ) |
839 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
840 |
836 772 837 837 74 838 839
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r ≤ 𝑢 ↔ ∀ 𝑖 ∈ 𝐼 if ( 𝑖 = 𝑋 , 1 , 0 ) ≤ ( 𝑢 ‘ 𝑖 ) ) ) |
841 |
835 840
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r ≤ 𝑢 ) |
842 |
18
|
psrbagcon |
⊢ ( ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∘r ≤ 𝑢 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑢 ) ) |
843 |
758 759 841 842
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑢 ) ) |
844 |
843
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
845 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
846 |
810 836 837 837 74 845 838
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
847 |
772 776 837 837 74 839 846
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
848 |
769 847
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ∀ 𝑖 ∈ 𝐼 ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
849 |
848
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
850 |
829
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℝ ) |
851 |
62
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℝ ) |
852 |
802
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
853 |
852
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℝ ) |
854 |
850 851 853
|
lesubaddd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑 ‘ 𝑖 ) ↔ ( 𝑢 ‘ 𝑖 ) ≤ ( ( 𝑑 ‘ 𝑖 ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
855 |
849 854
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
856 |
855
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ∀ 𝑖 ∈ 𝐼 ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑 ‘ 𝑖 ) ) |
857 |
772 836 837 837 74
|
offn |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) Fn 𝐼 ) |
858 |
772 836 837 837 74 839 838
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑖 ) = ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) |
859 |
857 810 837 837 74 858 845
|
ofrfval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ↔ ∀ 𝑖 ∈ 𝐼 ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) ≤ ( 𝑑 ‘ 𝑖 ) ) ) |
860 |
856 859
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘r ≤ 𝑑 ) |
861 |
756 844 860
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) |
862 |
829
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑢 ‘ 𝑖 ) ∈ ℂ ) |
863 |
239
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑋 , 1 , 0 ) ∈ ℂ ) |
864 |
862 863
|
npcand |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) = ( 𝑢 ‘ 𝑖 ) ) |
865 |
864
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑢 ‘ 𝑖 ) ) ) |
866 |
857 836 837 837 74 858 838
|
offval |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑢 ‘ 𝑖 ) − if ( 𝑖 = 𝑋 , 1 , 0 ) ) + if ( 𝑖 = 𝑋 , 1 , 0 ) ) ) ) |
867 |
761
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑢 ‘ 𝑖 ) ) ) |
868 |
865 866 867
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) → 𝑢 = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
869 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
870 |
869
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) → ( 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 = ( ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) |
871 |
755 861 868 870
|
rspceb2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∃ 𝑚 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } 𝑢 = ( 𝑚 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ) |
872 |
456 720 871
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↔ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) ) |
873 |
872
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } ) |
874 |
|
difrab |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) = { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∧ ¬ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) ) } |
875 |
873 874
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
876 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
877 |
875 876
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ) |
878 |
704 877 115
|
fmptssfisupp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
879 |
|
difss |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } |
880 |
|
disjdif |
⊢ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) = ∅ |
881 |
|
ssdisj |
⊢ ( ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ⊆ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∧ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) = ∅ ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) = ∅ ) |
882 |
879 880 881
|
mp2an |
⊢ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ) = ∅ |
883 |
882
|
ineqcomi |
⊢ ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) = ∅ |
884 |
883
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∩ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) = ∅ ) |
885 |
281 101
|
psdmullem |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) = ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) |
886 |
875 885
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) = ( ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ∪ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ) ) |
887 |
9 106 10 13 697 700 878 884 886
|
gsumsplit2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
888 |
693 887
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑏 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑑 ∘f − 𝑏 ) ) ) ) ∘ ( 𝑢 ∈ ( ∘f + “ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } × { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) ↦ ( 𝑢 ∘f − ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
889 |
427 593 888
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ‘ 𝑑 ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
890 |
417
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ∈ 𝐵 ) |
891 |
1 2 37 4 18 387 890 14
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ‘ 𝑑 ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) ) ) ) |
892 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → 𝐺 ∈ 𝐵 ) |
893 |
1 2 18 287 892 249
|
psdcoef |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) |
894 |
269
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( 𝐺 ‘ ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) |
895 |
894
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f − 𝑢 ) ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) |
896 |
893 895
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) |
897 |
896
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) = ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
898 |
311
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
899 |
9 26 37
|
mulgass3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
900 |
226 898 230 273 899
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
901 |
897 900
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) → ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) = ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) |
902 |
901
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) ) = ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) |
903 |
902
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ‘ ( 𝑑 ∘f − 𝑢 ) ) ) ) ) = ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) |
904 |
9 10 13 223 323 277 284
|
gsummptfidmsplit |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
905 |
891 903 904
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ‘ 𝑑 ) = ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) |
906 |
421 423 424 424 425 889 905
|
offval |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) ∘f ( +g ‘ 𝑅 ) ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
907 |
419 906
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( 𝑢 ‘ 𝑋 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝑅 Σg ( 𝑢 ∈ ( { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑘 ∘r ≤ 𝑑 } ∖ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ) ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ( +g ‘ 𝑅 ) ( 𝑅 Σg ( 𝑢 ∈ { 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( 𝑘 ∘r ≤ 𝑑 ∧ ( 𝑘 ‘ 𝑋 ) = 0 ) } ↦ ( ( ( ( 𝑑 ∘f − 𝑢 ) ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑢 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( ( 𝑑 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∘f − 𝑢 ) ) ) ) ) ) ) ) ) ) |
908 |
411 413 907
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝐹 · 𝐺 ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) · 𝐺 ) + ( 𝐹 · ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐺 ) ) ) ) |