| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psdascl.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psdascl.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 3 |  | psdascl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑆 ) | 
						
							| 4 |  | psdascl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | psdascl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | psdascl.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 7 |  | psdascl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐼 ) | 
						
							| 8 |  | psdascl.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐵 ) | 
						
							| 9 | 1 5 6 | psrsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 11 | 4 10 | eqtrid | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 12 | 8 11 | eleqtrd | ⊢ ( 𝜑  →  𝐶  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 15 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 16 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 17 | 3 13 14 15 16 | asclval | ⊢ ( 𝐶  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  →  ( 𝐴 ‘ 𝐶 )  =  ( 𝐶 (  ·𝑠  ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) | 
						
							| 18 | 12 17 | syl | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝐶 )  =  ( 𝐶 (  ·𝑠  ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐼  mPSDer  𝑅 ) ‘ 𝑋 ) ‘ ( 𝐴 ‘ 𝐶 ) )  =  ( ( ( 𝐼  mPSDer  𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 (  ·𝑠  ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 21 | 6 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 22 | 1 5 21 | psrring | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 23 | 20 16 | ringidcl | ⊢ ( 𝑆  ∈  Ring  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 25 | 1 20 15 4 6 7 24 8 | psdvsca | ⊢ ( 𝜑  →  ( ( ( 𝐼  mPSDer  𝑅 ) ‘ 𝑋 ) ‘ ( 𝐶 (  ·𝑠  ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) )  =  ( 𝐶 (  ·𝑠  ‘ 𝑆 ) ( ( ( 𝐼  mPSDer  𝑅 ) ‘ 𝑋 ) ‘ ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 26 | 1 16 2 5 6 7 | psd1 | ⊢ ( 𝜑  →  ( ( ( 𝐼  mPSDer  𝑅 ) ‘ 𝑋 ) ‘ ( 1r ‘ 𝑆 ) )  =   0  ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝜑  →  ( 𝐶 (  ·𝑠  ‘ 𝑆 ) ( ( ( 𝐼  mPSDer  𝑅 ) ‘ 𝑋 ) ‘ ( 1r ‘ 𝑆 ) ) )  =  ( 𝐶 (  ·𝑠  ‘ 𝑆 )  0  ) ) | 
						
							| 28 | 1 5 21 | psrlmod | ⊢ ( 𝜑  →  𝑆  ∈  LMod ) | 
						
							| 29 | 13 15 14 2 | lmodvs0 | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝐶  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  →  ( 𝐶 (  ·𝑠  ‘ 𝑆 )  0  )  =   0  ) | 
						
							| 30 | 28 12 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶 (  ·𝑠  ‘ 𝑆 )  0  )  =   0  ) | 
						
							| 31 | 27 30 | eqtrd | ⊢ ( 𝜑  →  ( 𝐶 (  ·𝑠  ‘ 𝑆 ) ( ( ( 𝐼  mPSDer  𝑅 ) ‘ 𝑋 ) ‘ ( 1r ‘ 𝑆 ) ) )  =   0  ) | 
						
							| 32 | 19 25 31 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐼  mPSDer  𝑅 ) ‘ 𝑋 ) ‘ ( 𝐴 ‘ 𝐶 ) )  =   0  ) |