| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psdmvr.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
psdmvr.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 3 |
|
psdmvr.o |
⊢ 1 = ( 1r ‘ 𝑆 ) |
| 4 |
|
psdmvr.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 5 |
|
psdmvr.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
psdmvr.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
psdmvr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
| 8 |
|
psdmvr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 10 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 11 |
1 4 9 5 6 8
|
mvrcl2 |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
| 12 |
1 9 10 7 11
|
psdval |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑉 ‘ 𝑌 ) ) = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝑉 ‘ 𝑌 ) ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 14 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑊 ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
| 17 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑌 ∈ 𝐼 ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 19 |
10
|
psrbagsn |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 20 |
5 19
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 22 |
10
|
psrbagaddcl |
⊢ ( ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 23 |
18 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 24 |
4 10 13 14 15 16 17 23
|
mvrval2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑉 ‘ 𝑌 ) ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = if ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 25 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → 1 ∈ ℝ ) |
| 26 |
10
|
psrbagf |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 28 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → 𝑋 ∈ 𝐼 ) |
| 29 |
27 28
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → ( 𝑘 ‘ 𝑋 ) ∈ ℕ0 ) |
| 30 |
|
nn0addge2 |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑘 ‘ 𝑋 ) ∈ ℕ0 ) → 1 ≤ ( ( 𝑘 ‘ 𝑋 ) + 1 ) ) |
| 31 |
25 29 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → 1 ≤ ( ( 𝑘 ‘ 𝑋 ) + 1 ) ) |
| 32 |
|
fveq1 |
⊢ ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ 𝑋 ) ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ 𝑋 ) ) |
| 34 |
26
|
ffnd |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑘 Fn 𝐼 ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑘 Fn 𝐼 ) |
| 36 |
|
1re |
⊢ 1 ∈ ℝ |
| 37 |
|
0re |
⊢ 0 ∈ ℝ |
| 38 |
36 37
|
ifcli |
⊢ if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ℝ |
| 39 |
38
|
elexi |
⊢ if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ V |
| 40 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
| 41 |
39 40
|
fnmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 |
| 42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) Fn 𝐼 ) |
| 43 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 44 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑋 ) = ( 𝑘 ‘ 𝑋 ) ) |
| 45 |
|
iftrue |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , 1 , 0 ) = 1 ) |
| 46 |
|
1ex |
⊢ 1 ∈ V |
| 47 |
45 40 46
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐼 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
| 48 |
47
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
| 49 |
35 42 15 15 43 44 48
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑘 ‘ 𝑋 ) + 1 ) ) |
| 50 |
7 49
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑘 ‘ 𝑋 ) + 1 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ‘ 𝑋 ) = ( ( 𝑘 ‘ 𝑋 ) + 1 ) ) |
| 52 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) |
| 53 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 = 𝑌 ↔ 𝑋 = 𝑌 ) ) |
| 54 |
53
|
ifbid |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑌 , 1 , 0 ) = if ( 𝑋 = 𝑌 , 1 , 0 ) ) |
| 55 |
36 37
|
ifcli |
⊢ if ( 𝑋 = 𝑌 , 1 , 0 ) ∈ ℝ |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → if ( 𝑋 = 𝑌 , 1 , 0 ) ∈ ℝ ) |
| 57 |
52 54 7 56
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ 𝑋 ) = if ( 𝑋 = 𝑌 , 1 , 0 ) ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ 𝑋 ) = if ( 𝑋 = 𝑌 , 1 , 0 ) ) |
| 59 |
33 51 58
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → ( ( 𝑘 ‘ 𝑋 ) + 1 ) = if ( 𝑋 = 𝑌 , 1 , 0 ) ) |
| 60 |
31 59
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → 1 ≤ if ( 𝑋 = 𝑌 , 1 , 0 ) ) |
| 61 |
|
1le1 |
⊢ 1 ≤ 1 |
| 62 |
|
0le1 |
⊢ 0 ≤ 1 |
| 63 |
|
anifp |
⊢ ( ( 1 ≤ 1 ∧ 0 ≤ 1 ) → if- ( 𝑋 = 𝑌 , 1 ≤ 1 , 0 ≤ 1 ) ) |
| 64 |
61 62 63
|
mp2an |
⊢ if- ( 𝑋 = 𝑌 , 1 ≤ 1 , 0 ≤ 1 ) |
| 65 |
|
brif1 |
⊢ ( if ( 𝑋 = 𝑌 , 1 , 0 ) ≤ 1 ↔ if- ( 𝑋 = 𝑌 , 1 ≤ 1 , 0 ≤ 1 ) ) |
| 66 |
64 65
|
mpbir |
⊢ if ( 𝑋 = 𝑌 , 1 , 0 ) ≤ 1 |
| 67 |
36 55
|
letri3i |
⊢ ( 1 = if ( 𝑋 = 𝑌 , 1 , 0 ) ↔ ( 1 ≤ if ( 𝑋 = 𝑌 , 1 , 0 ) ∧ if ( 𝑋 = 𝑌 , 1 , 0 ) ≤ 1 ) ) |
| 68 |
60 66 67
|
sylanblrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → 1 = if ( 𝑋 = 𝑌 , 1 , 0 ) ) |
| 69 |
68
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → if ( 𝑋 = 𝑌 , 1 , 0 ) = 1 ) |
| 70 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 71 |
|
iftrueb |
⊢ ( 1 ≠ 0 → ( if ( 𝑋 = 𝑌 , 1 , 0 ) = 1 ↔ 𝑋 = 𝑌 ) ) |
| 72 |
70 71
|
ax-mp |
⊢ ( if ( 𝑋 = 𝑌 , 1 , 0 ) = 1 ↔ 𝑋 = 𝑌 ) |
| 73 |
69 72
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) → 𝑋 = 𝑌 ) |
| 74 |
|
eqeq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑦 = 𝑋 ↔ 𝑦 = 𝑌 ) ) |
| 75 |
74
|
ifbid |
⊢ ( 𝑋 = 𝑌 → if ( 𝑦 = 𝑋 , 1 , 0 ) = if ( 𝑦 = 𝑌 , 1 , 0 ) ) |
| 76 |
75
|
mpteq2dv |
⊢ ( 𝑋 = 𝑌 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) |
| 77 |
76
|
oveq2d |
⊢ ( 𝑋 = 𝑌 → ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) ) |
| 78 |
77
|
eqeq1d |
⊢ ( 𝑋 = 𝑌 → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ↔ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) ) |
| 79 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 80 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 81 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 82 |
80 81
|
ifcli |
⊢ if ( 𝑦 = 𝑌 , 1 , 0 ) ∈ ℕ0 |
| 83 |
82
|
a1i |
⊢ ( 𝑦 ∈ 𝐼 → if ( 𝑦 = 𝑌 , 1 , 0 ) ∈ ℕ0 ) |
| 84 |
52 83
|
fmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 |
| 85 |
84
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
| 86 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
| 87 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
| 88 |
|
addcom |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑛 + 𝑚 ) = ( 𝑚 + 𝑛 ) ) |
| 89 |
88
|
eqeq1d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑛 + 𝑚 ) = 𝑚 ↔ ( 𝑚 + 𝑛 ) = 𝑚 ) ) |
| 90 |
|
addid0 |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑚 + 𝑛 ) = 𝑚 ↔ 𝑛 = 0 ) ) |
| 91 |
90
|
ancoms |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑚 + 𝑛 ) = 𝑚 ↔ 𝑛 = 0 ) ) |
| 92 |
89 91
|
bitrd |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑛 + 𝑚 ) = 𝑚 ↔ 𝑛 = 0 ) ) |
| 93 |
86 87 92
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 + 𝑚 ) = 𝑚 ↔ 𝑛 = 0 ) ) |
| 94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝑛 + 𝑚 ) = 𝑚 ↔ 𝑛 = 0 ) ) |
| 95 |
15 79 85 94
|
caofidlcan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ↔ 𝑘 = ( 𝐼 × { 0 } ) ) ) |
| 96 |
78 95
|
sylan9bbr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑋 = 𝑌 ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ↔ 𝑘 = ( 𝐼 × { 0 } ) ) ) |
| 97 |
73 96
|
biadanid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ↔ ( 𝑋 = 𝑌 ∧ 𝑘 = ( 𝐼 × { 0 } ) ) ) ) |
| 98 |
97
|
biancomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ↔ ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) ) ) |
| 99 |
98
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 100 |
24 99
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑉 ‘ 𝑌 ) ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 101 |
100
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝑉 ‘ 𝑌 ) ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 102 |
|
ovif2 |
⊢ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) , ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 103 |
|
fveq1 |
⊢ ( 𝑘 = ( 𝐼 × { 0 } ) → ( 𝑘 ‘ 𝑋 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑋 ) ) |
| 104 |
103
|
oveq1d |
⊢ ( 𝑘 = ( 𝐼 × { 0 } ) → ( ( 𝑘 ‘ 𝑋 ) + 1 ) = ( ( ( 𝐼 × { 0 } ) ‘ 𝑋 ) + 1 ) ) |
| 105 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
| 106 |
|
c0ex |
⊢ 0 ∈ V |
| 107 |
106
|
fvconst2 |
⊢ ( 𝑋 ∈ 𝐼 → ( ( 𝐼 × { 0 } ) ‘ 𝑋 ) = 0 ) |
| 108 |
105 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝐼 × { 0 } ) ‘ 𝑋 ) = 0 ) |
| 109 |
108
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 × { 0 } ) ‘ 𝑋 ) + 1 ) = ( 0 + 1 ) ) |
| 110 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 111 |
109 110
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 × { 0 } ) ‘ 𝑋 ) + 1 ) = 1 ) |
| 112 |
104 111
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 = ( 𝐼 × { 0 } ) ) → ( ( 𝑘 ‘ 𝑋 ) + 1 ) = 1 ) |
| 113 |
112
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) ) → ( ( 𝑘 ‘ 𝑋 ) + 1 ) = 1 ) |
| 114 |
113
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) ) → ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 115 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 116 |
115 14 6
|
ringidcld |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 117 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
| 118 |
115 117
|
mulg1 |
⊢ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) → ( 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 119 |
116 118
|
syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 120 |
119
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) ) → ( 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 121 |
114 120
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) ) → ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 122 |
6
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 123 |
122
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Mnd ) |
| 125 |
79 105
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ‘ 𝑋 ) ∈ ℕ0 ) |
| 126 |
80
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 1 ∈ ℕ0 ) |
| 127 |
125 126
|
nn0addcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) |
| 128 |
115 117 13
|
mulgnn0z |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( 𝑘 ‘ 𝑋 ) + 1 ) ∈ ℕ0 ) → ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 129 |
124 127 128
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 130 |
129
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ¬ ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) ) → ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 131 |
121 130
|
ifeq12da |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) , ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) = if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 132 |
102 131
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 133 |
|
ancom |
⊢ ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) ↔ ( 𝑋 = 𝑌 ∧ 𝑘 = ( 𝐼 × { 0 } ) ) ) |
| 134 |
|
ifbi |
⊢ ( ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) ↔ ( 𝑋 = 𝑌 ∧ 𝑘 = ( 𝐼 × { 0 } ) ) ) → if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( ( 𝑋 = 𝑌 ∧ 𝑘 = ( 𝐼 × { 0 } ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 135 |
133 134
|
ax-mp |
⊢ if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( ( 𝑋 = 𝑌 ∧ 𝑘 = ( 𝐼 × { 0 } ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) |
| 136 |
|
ifan |
⊢ if ( ( 𝑋 = 𝑌 ∧ 𝑘 = ( 𝐼 × { 0 } ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑋 = 𝑌 , if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) |
| 137 |
135 136
|
eqtri |
⊢ if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑋 = 𝑌 , if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) |
| 138 |
137
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( ( 𝑘 = ( 𝐼 × { 0 } ) ∧ 𝑋 = 𝑌 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑋 = 𝑌 , if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) |
| 139 |
101 132 138
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝑉 ‘ 𝑌 ) ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = if ( 𝑋 = 𝑌 , if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) |
| 140 |
139
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑋 ) + 1 ) ( .g ‘ 𝑅 ) ( ( 𝑉 ‘ 𝑌 ) ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑋 = 𝑌 , if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 141 |
|
ifmpt2v |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑋 = 𝑌 , if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑋 = 𝑌 , ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) , ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) ) |
| 142 |
1 5 6 10 13 14 3
|
psr1 |
⊢ ( 𝜑 → 1 = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 143 |
1 5 122 10 13 2
|
psr0 |
⊢ ( 𝜑 → 0 = ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
| 144 |
|
fconstmpt |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) |
| 145 |
143 144
|
eqtrdi |
⊢ ( 𝜑 → 0 = ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) ) |
| 146 |
142 145
|
ifeq12d |
⊢ ( 𝜑 → if ( 𝑋 = 𝑌 , 1 , 0 ) = if ( 𝑋 = 𝑌 , ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) , ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) ) ) |
| 147 |
141 146
|
eqtr4id |
⊢ ( 𝜑 → ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑋 = 𝑌 , if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑋 = 𝑌 , 1 , 0 ) ) |
| 148 |
12 140 147
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑉 ‘ 𝑌 ) ) = if ( 𝑋 = 𝑌 , 1 , 0 ) ) |