| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psdpw.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
psdpw.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 3 |
|
psdpw.g |
⊢ · = ( .g ‘ 𝑆 ) |
| 4 |
|
psdpw.t |
⊢ ∙ = ( .r ‘ 𝑆 ) |
| 5 |
|
psdpw.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) |
| 6 |
|
psdpw.e |
⊢ ↑ = ( .g ‘ 𝑀 ) |
| 7 |
|
psdpw.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 8 |
|
psdpw.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
| 9 |
|
psdpw.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 10 |
|
psdpw.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 11 |
|
fvoveq1 |
⊢ ( 𝑛 = 1 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑛 ↑ 𝐹 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1 ↑ 𝐹 ) ) ) |
| 12 |
|
id |
⊢ ( 𝑛 = 1 → 𝑛 = 1 ) |
| 13 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) ) |
| 14 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 15 |
13 14
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = 0 ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑛 = 1 → ( ( 𝑛 − 1 ) ↑ 𝐹 ) = ( 0 ↑ 𝐹 ) ) |
| 17 |
12 16
|
oveq12d |
⊢ ( 𝑛 = 1 → ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) = ( 1 · ( 0 ↑ 𝐹 ) ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝑛 = 1 → ( ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( 1 · ( 0 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 19 |
11 18
|
eqeq12d |
⊢ ( 𝑛 = 1 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑛 ↑ 𝐹 ) ) = ( ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ↔ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1 ↑ 𝐹 ) ) = ( ( 1 · ( 0 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 20 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑛 ↑ 𝐹 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) ) |
| 21 |
|
id |
⊢ ( 𝑛 = 𝑚 → 𝑛 = 𝑚 ) |
| 22 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 − 1 ) = ( 𝑚 − 1 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 − 1 ) ↑ 𝐹 ) = ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) |
| 24 |
21 23
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) = ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 26 |
20 25
|
eqeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑛 ↑ 𝐹 ) ) = ( ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ↔ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 27 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑛 ↑ 𝐹 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( ( 𝑚 + 1 ) ↑ 𝐹 ) ) ) |
| 28 |
|
id |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → 𝑛 = ( 𝑚 + 1 ) ) |
| 29 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 − 1 ) = ( ( 𝑚 + 1 ) − 1 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑛 − 1 ) ↑ 𝐹 ) = ( ( ( 𝑚 + 1 ) − 1 ) ↑ 𝐹 ) ) |
| 31 |
28 30
|
oveq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) = ( ( 𝑚 + 1 ) · ( ( ( 𝑚 + 1 ) − 1 ) ↑ 𝐹 ) ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( ( 𝑚 + 1 ) · ( ( ( 𝑚 + 1 ) − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 33 |
27 32
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑛 ↑ 𝐹 ) ) = ( ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ↔ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( ( 𝑚 + 1 ) ↑ 𝐹 ) ) = ( ( ( 𝑚 + 1 ) · ( ( ( 𝑚 + 1 ) − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 34 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑛 ↑ 𝐹 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑁 ↑ 𝐹 ) ) ) |
| 35 |
|
id |
⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) |
| 36 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 1 ) = ( 𝑁 − 1 ) ) |
| 37 |
36
|
oveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 − 1 ) ↑ 𝐹 ) = ( ( 𝑁 − 1 ) ↑ 𝐹 ) ) |
| 38 |
35 37
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) = ( 𝑁 · ( ( 𝑁 − 1 ) ↑ 𝐹 ) ) ) |
| 39 |
38
|
oveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( 𝑁 · ( ( 𝑁 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 40 |
34 39
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑛 ↑ 𝐹 ) ) = ( ( 𝑛 · ( ( 𝑛 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ↔ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑁 ↑ 𝐹 ) ) = ( ( 𝑁 · ( ( 𝑁 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 41 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 42 |
|
reldmpsr |
⊢ Rel dom mPwSer |
| 43 |
42 1 2
|
elbasov |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 44 |
9 43
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 45 |
44
|
simpld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 46 |
1 45 7
|
psrcrng |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 47 |
46
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 48 |
7
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 49 |
48
|
grpmgmd |
⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
| 50 |
1 2 49 8 9
|
psdcl |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ) |
| 51 |
2 4 41 47 50
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑆 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) |
| 52 |
5 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 53 |
5 41
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑀 ) |
| 54 |
52 53 6
|
mulg0 |
⊢ ( 𝐹 ∈ 𝐵 → ( 0 ↑ 𝐹 ) = ( 1r ‘ 𝑆 ) ) |
| 55 |
9 54
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝐹 ) = ( 1r ‘ 𝑆 ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( 0 ↑ 𝐹 ) ) = ( 1 · ( 1r ‘ 𝑆 ) ) ) |
| 57 |
2 41 47
|
ringidcld |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 58 |
2 3
|
mulg1 |
⊢ ( ( 1r ‘ 𝑆 ) ∈ 𝐵 → ( 1 · ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 59 |
57 58
|
syl |
⊢ ( 𝜑 → ( 1 · ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 60 |
56 59
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( 0 ↑ 𝐹 ) ) = ( 1r ‘ 𝑆 ) ) |
| 61 |
60
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · ( 0 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( 1r ‘ 𝑆 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 62 |
52 6
|
mulg1 |
⊢ ( 𝐹 ∈ 𝐵 → ( 1 ↑ 𝐹 ) = 𝐹 ) |
| 63 |
9 62
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝐹 ) = 𝐹 ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1 ↑ 𝐹 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) |
| 65 |
51 61 64
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 1 ↑ 𝐹 ) ) = ( ( 1 · ( 0 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 66 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 67 |
66
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) ∙ 𝐹 ) = ( ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ∙ 𝐹 ) ) |
| 68 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑆 ∈ CRing ) |
| 69 |
46
|
crnggrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑆 ∈ Grp ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
| 72 |
71
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
| 73 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑆 ∈ Ring ) |
| 74 |
5
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → 𝑀 ∈ Mnd ) |
| 75 |
73 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ Mnd ) |
| 76 |
|
nnm1nn0 |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 − 1 ) ∈ ℕ0 ) |
| 77 |
76
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 − 1 ) ∈ ℕ0 ) |
| 78 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 ∈ 𝐵 ) |
| 79 |
52 6 75 77 78
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 − 1 ) ↑ 𝐹 ) ∈ 𝐵 ) |
| 80 |
2 3 70 72 79
|
mulgcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∈ 𝐵 ) |
| 81 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ∈ 𝐵 ) |
| 82 |
2 4 68 80 81 78
|
crng32d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ∙ 𝐹 ) = ( ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ∙ 𝐹 ) = ( ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 84 |
2 3 4
|
mulgass2 |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝑚 ∈ ℤ ∧ ( ( 𝑚 − 1 ) ↑ 𝐹 ) ∈ 𝐵 ∧ 𝐹 ∈ 𝐵 ) ) → ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ 𝐹 ) = ( 𝑚 · ( ( ( 𝑚 − 1 ) ↑ 𝐹 ) ∙ 𝐹 ) ) ) |
| 85 |
73 72 79 78 84
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ 𝐹 ) = ( 𝑚 · ( ( ( 𝑚 − 1 ) ↑ 𝐹 ) ∙ 𝐹 ) ) ) |
| 86 |
5 4
|
mgpplusg |
⊢ ∙ = ( +g ‘ 𝑀 ) |
| 87 |
52 6 86
|
mulgnn0p1 |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑚 − 1 ) ∈ ℕ0 ∧ 𝐹 ∈ 𝐵 ) → ( ( ( 𝑚 − 1 ) + 1 ) ↑ 𝐹 ) = ( ( ( 𝑚 − 1 ) ↑ 𝐹 ) ∙ 𝐹 ) ) |
| 88 |
75 77 78 87
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 − 1 ) + 1 ) ↑ 𝐹 ) = ( ( ( 𝑚 − 1 ) ↑ 𝐹 ) ∙ 𝐹 ) ) |
| 89 |
71
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 90 |
|
npcan1 |
⊢ ( 𝑚 ∈ ℂ → ( ( 𝑚 − 1 ) + 1 ) = 𝑚 ) |
| 91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 − 1 ) + 1 ) = 𝑚 ) |
| 92 |
91
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 − 1 ) + 1 ) ↑ 𝐹 ) = ( 𝑚 ↑ 𝐹 ) ) |
| 93 |
88 92
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 − 1 ) ↑ 𝐹 ) ∙ 𝐹 ) = ( 𝑚 ↑ 𝐹 ) ) |
| 94 |
93
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · ( ( ( 𝑚 − 1 ) ↑ 𝐹 ) ∙ 𝐹 ) ) = ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ) |
| 95 |
85 94
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ 𝐹 ) = ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ) |
| 96 |
95
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 98 |
67 83 97
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) ∙ 𝐹 ) = ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 99 |
98
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) ∙ 𝐹 ) ( +g ‘ 𝑆 ) ( ( 𝑚 ↑ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) = ( ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) ( ( 𝑚 ↑ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 100 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 101 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → 𝑅 ∈ CRing ) |
| 102 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → 𝑋 ∈ 𝐼 ) |
| 103 |
47 74
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 104 |
|
mndmgm |
⊢ ( 𝑀 ∈ Mnd → 𝑀 ∈ Mgm ) |
| 105 |
103 104
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mgm ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ Mgm ) |
| 107 |
52 6
|
mulgnncl |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) → ( 𝑚 ↑ 𝐹 ) ∈ 𝐵 ) |
| 108 |
106 71 78 107
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ 𝐹 ) ∈ 𝐵 ) |
| 109 |
108
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( 𝑚 ↑ 𝐹 ) ∈ 𝐵 ) |
| 110 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → 𝐹 ∈ 𝐵 ) |
| 111 |
1 2 100 4 101 102 109 110
|
psdmul |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( ( 𝑚 ↑ 𝐹 ) ∙ 𝐹 ) ) = ( ( ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) ∙ 𝐹 ) ( +g ‘ 𝑆 ) ( ( 𝑚 ↑ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 112 |
2 3 100
|
mulgnnp1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 ↑ 𝐹 ) ∈ 𝐵 ) → ( ( 𝑚 + 1 ) · ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ( +g ‘ 𝑆 ) ( 𝑚 ↑ 𝐹 ) ) ) |
| 113 |
71 108 112
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) · ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ( +g ‘ 𝑆 ) ( 𝑚 ↑ 𝐹 ) ) ) |
| 114 |
113
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 + 1 ) · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ( +g ‘ 𝑆 ) ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 115 |
2 3 70 72 108
|
mulgcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ∈ 𝐵 ) |
| 116 |
2 100 4 73 115 108 81
|
ringdird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ( +g ‘ 𝑆 ) ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) ( ( 𝑚 ↑ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 117 |
114 116
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 + 1 ) · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) ( ( 𝑚 ↑ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 118 |
117
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝑚 + 1 ) · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( ( 𝑚 · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ( +g ‘ 𝑆 ) ( ( 𝑚 ↑ 𝐹 ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) ) |
| 119 |
99 111 118
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( ( 𝑚 ↑ 𝐹 ) ∙ 𝐹 ) ) = ( ( ( 𝑚 + 1 ) · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 120 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → 𝑚 ∈ ℕ ) |
| 121 |
52 6 86
|
mulgnnp1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝑚 + 1 ) ↑ 𝐹 ) = ( ( 𝑚 ↑ 𝐹 ) ∙ 𝐹 ) ) |
| 122 |
120 110 121
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ↑ 𝐹 ) = ( ( 𝑚 ↑ 𝐹 ) ∙ 𝐹 ) ) |
| 123 |
122
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( ( 𝑚 + 1 ) ↑ 𝐹 ) ) = ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( ( 𝑚 ↑ 𝐹 ) ∙ 𝐹 ) ) ) |
| 124 |
120
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → 𝑚 ∈ ℂ ) |
| 125 |
|
pncan1 |
⊢ ( 𝑚 ∈ ℂ → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 126 |
124 125
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 127 |
126
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝑚 + 1 ) − 1 ) ↑ 𝐹 ) = ( 𝑚 ↑ 𝐹 ) ) |
| 128 |
127
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) · ( ( ( 𝑚 + 1 ) − 1 ) ↑ 𝐹 ) ) = ( ( 𝑚 + 1 ) · ( 𝑚 ↑ 𝐹 ) ) ) |
| 129 |
128
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝑚 + 1 ) · ( ( ( 𝑚 + 1 ) − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) = ( ( ( 𝑚 + 1 ) · ( 𝑚 ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 130 |
119 123 129
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑚 ↑ 𝐹 ) ) = ( ( 𝑚 · ( ( 𝑚 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( ( 𝑚 + 1 ) ↑ 𝐹 ) ) = ( ( ( 𝑚 + 1 ) · ( ( ( 𝑚 + 1 ) − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 131 |
19 26 33 40 65 130
|
nnindd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑁 ↑ 𝐹 ) ) = ( ( 𝑁 · ( ( 𝑁 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |
| 132 |
10 131
|
mpdan |
⊢ ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ ( 𝑁 ↑ 𝐹 ) ) = ( ( 𝑁 · ( ( 𝑁 − 1 ) ↑ 𝐹 ) ) ∙ ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) ) ) |