| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psdpw.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psdpw.b |
|- B = ( Base ` S ) |
| 3 |
|
psdpw.g |
|- .x. = ( .g ` S ) |
| 4 |
|
psdpw.t |
|- .xb = ( .r ` S ) |
| 5 |
|
psdpw.m |
|- M = ( mulGrp ` S ) |
| 6 |
|
psdpw.e |
|- .^ = ( .g ` M ) |
| 7 |
|
psdpw.r |
|- ( ph -> R e. CRing ) |
| 8 |
|
psdpw.x |
|- ( ph -> X e. I ) |
| 9 |
|
psdpw.f |
|- ( ph -> F e. B ) |
| 10 |
|
psdpw.n |
|- ( ph -> N e. NN ) |
| 11 |
|
fvoveq1 |
|- ( n = 1 -> ( ( ( I mPSDer R ) ` X ) ` ( n .^ F ) ) = ( ( ( I mPSDer R ) ` X ) ` ( 1 .^ F ) ) ) |
| 12 |
|
id |
|- ( n = 1 -> n = 1 ) |
| 13 |
|
oveq1 |
|- ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) |
| 14 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 15 |
13 14
|
eqtrdi |
|- ( n = 1 -> ( n - 1 ) = 0 ) |
| 16 |
15
|
oveq1d |
|- ( n = 1 -> ( ( n - 1 ) .^ F ) = ( 0 .^ F ) ) |
| 17 |
12 16
|
oveq12d |
|- ( n = 1 -> ( n .x. ( ( n - 1 ) .^ F ) ) = ( 1 .x. ( 0 .^ F ) ) ) |
| 18 |
17
|
oveq1d |
|- ( n = 1 -> ( ( n .x. ( ( n - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( 1 .x. ( 0 .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 19 |
11 18
|
eqeq12d |
|- ( n = 1 -> ( ( ( ( I mPSDer R ) ` X ) ` ( n .^ F ) ) = ( ( n .x. ( ( n - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) <-> ( ( ( I mPSDer R ) ` X ) ` ( 1 .^ F ) ) = ( ( 1 .x. ( 0 .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 20 |
|
fvoveq1 |
|- ( n = m -> ( ( ( I mPSDer R ) ` X ) ` ( n .^ F ) ) = ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) ) |
| 21 |
|
id |
|- ( n = m -> n = m ) |
| 22 |
|
oveq1 |
|- ( n = m -> ( n - 1 ) = ( m - 1 ) ) |
| 23 |
22
|
oveq1d |
|- ( n = m -> ( ( n - 1 ) .^ F ) = ( ( m - 1 ) .^ F ) ) |
| 24 |
21 23
|
oveq12d |
|- ( n = m -> ( n .x. ( ( n - 1 ) .^ F ) ) = ( m .x. ( ( m - 1 ) .^ F ) ) ) |
| 25 |
24
|
oveq1d |
|- ( n = m -> ( ( n .x. ( ( n - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 26 |
20 25
|
eqeq12d |
|- ( n = m -> ( ( ( ( I mPSDer R ) ` X ) ` ( n .^ F ) ) = ( ( n .x. ( ( n - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) <-> ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 27 |
|
fvoveq1 |
|- ( n = ( m + 1 ) -> ( ( ( I mPSDer R ) ` X ) ` ( n .^ F ) ) = ( ( ( I mPSDer R ) ` X ) ` ( ( m + 1 ) .^ F ) ) ) |
| 28 |
|
id |
|- ( n = ( m + 1 ) -> n = ( m + 1 ) ) |
| 29 |
|
oveq1 |
|- ( n = ( m + 1 ) -> ( n - 1 ) = ( ( m + 1 ) - 1 ) ) |
| 30 |
29
|
oveq1d |
|- ( n = ( m + 1 ) -> ( ( n - 1 ) .^ F ) = ( ( ( m + 1 ) - 1 ) .^ F ) ) |
| 31 |
28 30
|
oveq12d |
|- ( n = ( m + 1 ) -> ( n .x. ( ( n - 1 ) .^ F ) ) = ( ( m + 1 ) .x. ( ( ( m + 1 ) - 1 ) .^ F ) ) ) |
| 32 |
31
|
oveq1d |
|- ( n = ( m + 1 ) -> ( ( n .x. ( ( n - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( ( m + 1 ) .x. ( ( ( m + 1 ) - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 33 |
27 32
|
eqeq12d |
|- ( n = ( m + 1 ) -> ( ( ( ( I mPSDer R ) ` X ) ` ( n .^ F ) ) = ( ( n .x. ( ( n - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) <-> ( ( ( I mPSDer R ) ` X ) ` ( ( m + 1 ) .^ F ) ) = ( ( ( m + 1 ) .x. ( ( ( m + 1 ) - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 34 |
|
fvoveq1 |
|- ( n = N -> ( ( ( I mPSDer R ) ` X ) ` ( n .^ F ) ) = ( ( ( I mPSDer R ) ` X ) ` ( N .^ F ) ) ) |
| 35 |
|
id |
|- ( n = N -> n = N ) |
| 36 |
|
oveq1 |
|- ( n = N -> ( n - 1 ) = ( N - 1 ) ) |
| 37 |
36
|
oveq1d |
|- ( n = N -> ( ( n - 1 ) .^ F ) = ( ( N - 1 ) .^ F ) ) |
| 38 |
35 37
|
oveq12d |
|- ( n = N -> ( n .x. ( ( n - 1 ) .^ F ) ) = ( N .x. ( ( N - 1 ) .^ F ) ) ) |
| 39 |
38
|
oveq1d |
|- ( n = N -> ( ( n .x. ( ( n - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( N .x. ( ( N - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 40 |
34 39
|
eqeq12d |
|- ( n = N -> ( ( ( ( I mPSDer R ) ` X ) ` ( n .^ F ) ) = ( ( n .x. ( ( n - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) <-> ( ( ( I mPSDer R ) ` X ) ` ( N .^ F ) ) = ( ( N .x. ( ( N - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 41 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 42 |
|
reldmpsr |
|- Rel dom mPwSer |
| 43 |
42 1 2
|
elbasov |
|- ( F e. B -> ( I e. _V /\ R e. _V ) ) |
| 44 |
9 43
|
syl |
|- ( ph -> ( I e. _V /\ R e. _V ) ) |
| 45 |
44
|
simpld |
|- ( ph -> I e. _V ) |
| 46 |
1 45 7
|
psrcrng |
|- ( ph -> S e. CRing ) |
| 47 |
46
|
crngringd |
|- ( ph -> S e. Ring ) |
| 48 |
7
|
crnggrpd |
|- ( ph -> R e. Grp ) |
| 49 |
48
|
grpmgmd |
|- ( ph -> R e. Mgm ) |
| 50 |
1 2 49 8 9
|
psdcl |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` F ) e. B ) |
| 51 |
2 4 41 47 50
|
ringlidmd |
|- ( ph -> ( ( 1r ` S ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( ( I mPSDer R ) ` X ) ` F ) ) |
| 52 |
5 2
|
mgpbas |
|- B = ( Base ` M ) |
| 53 |
5 41
|
ringidval |
|- ( 1r ` S ) = ( 0g ` M ) |
| 54 |
52 53 6
|
mulg0 |
|- ( F e. B -> ( 0 .^ F ) = ( 1r ` S ) ) |
| 55 |
9 54
|
syl |
|- ( ph -> ( 0 .^ F ) = ( 1r ` S ) ) |
| 56 |
55
|
oveq2d |
|- ( ph -> ( 1 .x. ( 0 .^ F ) ) = ( 1 .x. ( 1r ` S ) ) ) |
| 57 |
2 41 47
|
ringidcld |
|- ( ph -> ( 1r ` S ) e. B ) |
| 58 |
2 3
|
mulg1 |
|- ( ( 1r ` S ) e. B -> ( 1 .x. ( 1r ` S ) ) = ( 1r ` S ) ) |
| 59 |
57 58
|
syl |
|- ( ph -> ( 1 .x. ( 1r ` S ) ) = ( 1r ` S ) ) |
| 60 |
56 59
|
eqtrd |
|- ( ph -> ( 1 .x. ( 0 .^ F ) ) = ( 1r ` S ) ) |
| 61 |
60
|
oveq1d |
|- ( ph -> ( ( 1 .x. ( 0 .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( 1r ` S ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 62 |
52 6
|
mulg1 |
|- ( F e. B -> ( 1 .^ F ) = F ) |
| 63 |
9 62
|
syl |
|- ( ph -> ( 1 .^ F ) = F ) |
| 64 |
63
|
fveq2d |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( 1 .^ F ) ) = ( ( ( I mPSDer R ) ` X ) ` F ) ) |
| 65 |
51 61 64
|
3eqtr4rd |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( 1 .^ F ) ) = ( ( 1 .x. ( 0 .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 66 |
|
simpr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 67 |
66
|
oveq1d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) .xb F ) = ( ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) .xb F ) ) |
| 68 |
46
|
adantr |
|- ( ( ph /\ m e. NN ) -> S e. CRing ) |
| 69 |
46
|
crnggrpd |
|- ( ph -> S e. Grp ) |
| 70 |
69
|
adantr |
|- ( ( ph /\ m e. NN ) -> S e. Grp ) |
| 71 |
|
simpr |
|- ( ( ph /\ m e. NN ) -> m e. NN ) |
| 72 |
71
|
nnzd |
|- ( ( ph /\ m e. NN ) -> m e. ZZ ) |
| 73 |
47
|
adantr |
|- ( ( ph /\ m e. NN ) -> S e. Ring ) |
| 74 |
5
|
ringmgp |
|- ( S e. Ring -> M e. Mnd ) |
| 75 |
73 74
|
syl |
|- ( ( ph /\ m e. NN ) -> M e. Mnd ) |
| 76 |
|
nnm1nn0 |
|- ( m e. NN -> ( m - 1 ) e. NN0 ) |
| 77 |
76
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( m - 1 ) e. NN0 ) |
| 78 |
9
|
adantr |
|- ( ( ph /\ m e. NN ) -> F e. B ) |
| 79 |
52 6 75 77 78
|
mulgnn0cld |
|- ( ( ph /\ m e. NN ) -> ( ( m - 1 ) .^ F ) e. B ) |
| 80 |
2 3 70 72 79
|
mulgcld |
|- ( ( ph /\ m e. NN ) -> ( m .x. ( ( m - 1 ) .^ F ) ) e. B ) |
| 81 |
50
|
adantr |
|- ( ( ph /\ m e. NN ) -> ( ( ( I mPSDer R ) ` X ) ` F ) e. B ) |
| 82 |
2 4 68 80 81 78
|
crng32d |
|- ( ( ph /\ m e. NN ) -> ( ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) .xb F ) = ( ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 83 |
82
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) .xb F ) = ( ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 84 |
2 3 4
|
mulgass2 |
|- ( ( S e. Ring /\ ( m e. ZZ /\ ( ( m - 1 ) .^ F ) e. B /\ F e. B ) ) -> ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb F ) = ( m .x. ( ( ( m - 1 ) .^ F ) .xb F ) ) ) |
| 85 |
73 72 79 78 84
|
syl13anc |
|- ( ( ph /\ m e. NN ) -> ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb F ) = ( m .x. ( ( ( m - 1 ) .^ F ) .xb F ) ) ) |
| 86 |
5 4
|
mgpplusg |
|- .xb = ( +g ` M ) |
| 87 |
52 6 86
|
mulgnn0p1 |
|- ( ( M e. Mnd /\ ( m - 1 ) e. NN0 /\ F e. B ) -> ( ( ( m - 1 ) + 1 ) .^ F ) = ( ( ( m - 1 ) .^ F ) .xb F ) ) |
| 88 |
75 77 78 87
|
syl3anc |
|- ( ( ph /\ m e. NN ) -> ( ( ( m - 1 ) + 1 ) .^ F ) = ( ( ( m - 1 ) .^ F ) .xb F ) ) |
| 89 |
71
|
nncnd |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 90 |
|
npcan1 |
|- ( m e. CC -> ( ( m - 1 ) + 1 ) = m ) |
| 91 |
89 90
|
syl |
|- ( ( ph /\ m e. NN ) -> ( ( m - 1 ) + 1 ) = m ) |
| 92 |
91
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( ( m - 1 ) + 1 ) .^ F ) = ( m .^ F ) ) |
| 93 |
88 92
|
eqtr3d |
|- ( ( ph /\ m e. NN ) -> ( ( ( m - 1 ) .^ F ) .xb F ) = ( m .^ F ) ) |
| 94 |
93
|
oveq2d |
|- ( ( ph /\ m e. NN ) -> ( m .x. ( ( ( m - 1 ) .^ F ) .xb F ) ) = ( m .x. ( m .^ F ) ) ) |
| 95 |
85 94
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb F ) = ( m .x. ( m .^ F ) ) ) |
| 96 |
95
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( m .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 97 |
96
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( m .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 98 |
67 83 97
|
3eqtrd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) .xb F ) = ( ( m .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 99 |
98
|
oveq1d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) .xb F ) ( +g ` S ) ( ( m .^ F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) = ( ( ( m .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ( +g ` S ) ( ( m .^ F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 100 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 101 |
7
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> R e. CRing ) |
| 102 |
8
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> X e. I ) |
| 103 |
47 74
|
syl |
|- ( ph -> M e. Mnd ) |
| 104 |
|
mndmgm |
|- ( M e. Mnd -> M e. Mgm ) |
| 105 |
103 104
|
syl |
|- ( ph -> M e. Mgm ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ m e. NN ) -> M e. Mgm ) |
| 107 |
52 6
|
mulgnncl |
|- ( ( M e. Mgm /\ m e. NN /\ F e. B ) -> ( m .^ F ) e. B ) |
| 108 |
106 71 78 107
|
syl3anc |
|- ( ( ph /\ m e. NN ) -> ( m .^ F ) e. B ) |
| 109 |
108
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( m .^ F ) e. B ) |
| 110 |
9
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> F e. B ) |
| 111 |
1 2 100 4 101 102 109 110
|
psdmul |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( I mPSDer R ) ` X ) ` ( ( m .^ F ) .xb F ) ) = ( ( ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) .xb F ) ( +g ` S ) ( ( m .^ F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 112 |
2 3 100
|
mulgnnp1 |
|- ( ( m e. NN /\ ( m .^ F ) e. B ) -> ( ( m + 1 ) .x. ( m .^ F ) ) = ( ( m .x. ( m .^ F ) ) ( +g ` S ) ( m .^ F ) ) ) |
| 113 |
71 108 112
|
syl2anc |
|- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) .x. ( m .^ F ) ) = ( ( m .x. ( m .^ F ) ) ( +g ` S ) ( m .^ F ) ) ) |
| 114 |
113
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( ( m + 1 ) .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( ( m .x. ( m .^ F ) ) ( +g ` S ) ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 115 |
2 3 70 72 108
|
mulgcld |
|- ( ( ph /\ m e. NN ) -> ( m .x. ( m .^ F ) ) e. B ) |
| 116 |
2 100 4 73 115 108 81
|
ringdird |
|- ( ( ph /\ m e. NN ) -> ( ( ( m .x. ( m .^ F ) ) ( +g ` S ) ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( ( m .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ( +g ` S ) ( ( m .^ F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 117 |
114 116
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> ( ( ( m + 1 ) .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( ( m .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ( +g ` S ) ( ( m .^ F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( m + 1 ) .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( ( m .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ( +g ` S ) ( ( m .^ F ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) ) |
| 119 |
99 111 118
|
3eqtr4d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( I mPSDer R ) ` X ) ` ( ( m .^ F ) .xb F ) ) = ( ( ( m + 1 ) .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 120 |
|
simplr |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> m e. NN ) |
| 121 |
52 6 86
|
mulgnnp1 |
|- ( ( m e. NN /\ F e. B ) -> ( ( m + 1 ) .^ F ) = ( ( m .^ F ) .xb F ) ) |
| 122 |
120 110 121
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( m + 1 ) .^ F ) = ( ( m .^ F ) .xb F ) ) |
| 123 |
122
|
fveq2d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( I mPSDer R ) ` X ) ` ( ( m + 1 ) .^ F ) ) = ( ( ( I mPSDer R ) ` X ) ` ( ( m .^ F ) .xb F ) ) ) |
| 124 |
120
|
nncnd |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> m e. CC ) |
| 125 |
|
pncan1 |
|- ( m e. CC -> ( ( m + 1 ) - 1 ) = m ) |
| 126 |
124 125
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( m + 1 ) - 1 ) = m ) |
| 127 |
126
|
oveq1d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( m + 1 ) - 1 ) .^ F ) = ( m .^ F ) ) |
| 128 |
127
|
oveq2d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( m + 1 ) .x. ( ( ( m + 1 ) - 1 ) .^ F ) ) = ( ( m + 1 ) .x. ( m .^ F ) ) ) |
| 129 |
128
|
oveq1d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( m + 1 ) .x. ( ( ( m + 1 ) - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) = ( ( ( m + 1 ) .x. ( m .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 130 |
119 123 129
|
3eqtr4d |
|- ( ( ( ph /\ m e. NN ) /\ ( ( ( I mPSDer R ) ` X ) ` ( m .^ F ) ) = ( ( m .x. ( ( m - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) -> ( ( ( I mPSDer R ) ` X ) ` ( ( m + 1 ) .^ F ) ) = ( ( ( m + 1 ) .x. ( ( ( m + 1 ) - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 131 |
19 26 33 40 65 130
|
nnindd |
|- ( ( ph /\ N e. NN ) -> ( ( ( I mPSDer R ) ` X ) ` ( N .^ F ) ) = ( ( N .x. ( ( N - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |
| 132 |
10 131
|
mpdan |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( N .^ F ) ) = ( ( N .x. ( ( N - 1 ) .^ F ) ) .xb ( ( ( I mPSDer R ) ` X ) ` F ) ) ) |