Metamath Proof Explorer


Theorem psdpw

Description: Power rule for partial derivative of power series. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psdpw.s S = I mPwSer R
psdpw.b B = Base S
psdpw.g · ˙ = S
psdpw.t ˙ = S
psdpw.m M = mulGrp S
psdpw.e × ˙ = M
psdpw.r φ R CRing
psdpw.x φ X I
psdpw.f φ F B
psdpw.n φ N
Assertion psdpw φ I mPSDer R X N × ˙ F = N · ˙ N 1 × ˙ F ˙ I mPSDer R X F

Proof

Step Hyp Ref Expression
1 psdpw.s S = I mPwSer R
2 psdpw.b B = Base S
3 psdpw.g · ˙ = S
4 psdpw.t ˙ = S
5 psdpw.m M = mulGrp S
6 psdpw.e × ˙ = M
7 psdpw.r φ R CRing
8 psdpw.x φ X I
9 psdpw.f φ F B
10 psdpw.n φ N
11 fvoveq1 n = 1 I mPSDer R X n × ˙ F = I mPSDer R X 1 × ˙ F
12 id n = 1 n = 1
13 oveq1 n = 1 n 1 = 1 1
14 1m1e0 1 1 = 0
15 13 14 eqtrdi n = 1 n 1 = 0
16 15 oveq1d n = 1 n 1 × ˙ F = 0 × ˙ F
17 12 16 oveq12d n = 1 n · ˙ n 1 × ˙ F = 1 · ˙ 0 × ˙ F
18 17 oveq1d n = 1 n · ˙ n 1 × ˙ F ˙ I mPSDer R X F = 1 · ˙ 0 × ˙ F ˙ I mPSDer R X F
19 11 18 eqeq12d n = 1 I mPSDer R X n × ˙ F = n · ˙ n 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X 1 × ˙ F = 1 · ˙ 0 × ˙ F ˙ I mPSDer R X F
20 fvoveq1 n = m I mPSDer R X n × ˙ F = I mPSDer R X m × ˙ F
21 id n = m n = m
22 oveq1 n = m n 1 = m 1
23 22 oveq1d n = m n 1 × ˙ F = m 1 × ˙ F
24 21 23 oveq12d n = m n · ˙ n 1 × ˙ F = m · ˙ m 1 × ˙ F
25 24 oveq1d n = m n · ˙ n 1 × ˙ F ˙ I mPSDer R X F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F
26 20 25 eqeq12d n = m I mPSDer R X n × ˙ F = n · ˙ n 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F
27 fvoveq1 n = m + 1 I mPSDer R X n × ˙ F = I mPSDer R X m + 1 × ˙ F
28 id n = m + 1 n = m + 1
29 oveq1 n = m + 1 n 1 = m + 1 - 1
30 29 oveq1d n = m + 1 n 1 × ˙ F = m + 1 - 1 × ˙ F
31 28 30 oveq12d n = m + 1 n · ˙ n 1 × ˙ F = m + 1 · ˙ m + 1 - 1 × ˙ F
32 31 oveq1d n = m + 1 n · ˙ n 1 × ˙ F ˙ I mPSDer R X F = m + 1 · ˙ m + 1 - 1 × ˙ F ˙ I mPSDer R X F
33 27 32 eqeq12d n = m + 1 I mPSDer R X n × ˙ F = n · ˙ n 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m + 1 × ˙ F = m + 1 · ˙ m + 1 - 1 × ˙ F ˙ I mPSDer R X F
34 fvoveq1 n = N I mPSDer R X n × ˙ F = I mPSDer R X N × ˙ F
35 id n = N n = N
36 oveq1 n = N n 1 = N 1
37 36 oveq1d n = N n 1 × ˙ F = N 1 × ˙ F
38 35 37 oveq12d n = N n · ˙ n 1 × ˙ F = N · ˙ N 1 × ˙ F
39 38 oveq1d n = N n · ˙ n 1 × ˙ F ˙ I mPSDer R X F = N · ˙ N 1 × ˙ F ˙ I mPSDer R X F
40 34 39 eqeq12d n = N I mPSDer R X n × ˙ F = n · ˙ n 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X N × ˙ F = N · ˙ N 1 × ˙ F ˙ I mPSDer R X F
41 eqid 1 S = 1 S
42 reldmpsr Rel dom mPwSer
43 42 1 2 elbasov F B I V R V
44 9 43 syl φ I V R V
45 44 simpld φ I V
46 1 45 7 psrcrng φ S CRing
47 46 crngringd φ S Ring
48 7 crnggrpd φ R Grp
49 48 grpmgmd φ R Mgm
50 1 2 49 8 9 psdcl φ I mPSDer R X F B
51 2 4 41 47 50 ringlidmd φ 1 S ˙ I mPSDer R X F = I mPSDer R X F
52 5 2 mgpbas B = Base M
53 5 41 ringidval 1 S = 0 M
54 52 53 6 mulg0 F B 0 × ˙ F = 1 S
55 9 54 syl φ 0 × ˙ F = 1 S
56 55 oveq2d φ 1 · ˙ 0 × ˙ F = 1 · ˙ 1 S
57 2 41 47 ringidcld φ 1 S B
58 2 3 mulg1 1 S B 1 · ˙ 1 S = 1 S
59 57 58 syl φ 1 · ˙ 1 S = 1 S
60 56 59 eqtrd φ 1 · ˙ 0 × ˙ F = 1 S
61 60 oveq1d φ 1 · ˙ 0 × ˙ F ˙ I mPSDer R X F = 1 S ˙ I mPSDer R X F
62 52 6 mulg1 F B 1 × ˙ F = F
63 9 62 syl φ 1 × ˙ F = F
64 63 fveq2d φ I mPSDer R X 1 × ˙ F = I mPSDer R X F
65 51 61 64 3eqtr4rd φ I mPSDer R X 1 × ˙ F = 1 · ˙ 0 × ˙ F ˙ I mPSDer R X F
66 simpr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F
67 66 oveq1d φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m × ˙ F ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F ˙ F
68 46 adantr φ m S CRing
69 46 crnggrpd φ S Grp
70 69 adantr φ m S Grp
71 simpr φ m m
72 71 nnzd φ m m
73 47 adantr φ m S Ring
74 5 ringmgp S Ring M Mnd
75 73 74 syl φ m M Mnd
76 nnm1nn0 m m 1 0
77 76 adantl φ m m 1 0
78 9 adantr φ m F B
79 52 6 75 77 78 mulgnn0cld φ m m 1 × ˙ F B
80 2 3 70 72 79 mulgcld φ m m · ˙ m 1 × ˙ F B
81 50 adantr φ m I mPSDer R X F B
82 2 4 68 80 81 78 crng32d φ m m · ˙ m 1 × ˙ F ˙ I mPSDer R X F ˙ F = m · ˙ m 1 × ˙ F ˙ F ˙ I mPSDer R X F
83 82 adantr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m · ˙ m 1 × ˙ F ˙ I mPSDer R X F ˙ F = m · ˙ m 1 × ˙ F ˙ F ˙ I mPSDer R X F
84 2 3 4 mulgass2 S Ring m m 1 × ˙ F B F B m · ˙ m 1 × ˙ F ˙ F = m · ˙ m 1 × ˙ F ˙ F
85 73 72 79 78 84 syl13anc φ m m · ˙ m 1 × ˙ F ˙ F = m · ˙ m 1 × ˙ F ˙ F
86 5 4 mgpplusg ˙ = + M
87 52 6 86 mulgnn0p1 M Mnd m 1 0 F B m - 1 + 1 × ˙ F = m 1 × ˙ F ˙ F
88 75 77 78 87 syl3anc φ m m - 1 + 1 × ˙ F = m 1 × ˙ F ˙ F
89 71 nncnd φ m m
90 npcan1 m m - 1 + 1 = m
91 89 90 syl φ m m - 1 + 1 = m
92 91 oveq1d φ m m - 1 + 1 × ˙ F = m × ˙ F
93 88 92 eqtr3d φ m m 1 × ˙ F ˙ F = m × ˙ F
94 93 oveq2d φ m m · ˙ m 1 × ˙ F ˙ F = m · ˙ m × ˙ F
95 85 94 eqtrd φ m m · ˙ m 1 × ˙ F ˙ F = m · ˙ m × ˙ F
96 95 oveq1d φ m m · ˙ m 1 × ˙ F ˙ F ˙ I mPSDer R X F = m · ˙ m × ˙ F ˙ I mPSDer R X F
97 96 adantr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m · ˙ m 1 × ˙ F ˙ F ˙ I mPSDer R X F = m · ˙ m × ˙ F ˙ I mPSDer R X F
98 67 83 97 3eqtrd φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m × ˙ F ˙ F = m · ˙ m × ˙ F ˙ I mPSDer R X F
99 98 oveq1d φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m × ˙ F ˙ F + S m × ˙ F ˙ I mPSDer R X F = m · ˙ m × ˙ F ˙ I mPSDer R X F + S m × ˙ F ˙ I mPSDer R X F
100 eqid + S = + S
101 7 ad2antrr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F R CRing
102 8 ad2antrr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F X I
103 47 74 syl φ M Mnd
104 mndmgm M Mnd M Mgm
105 103 104 syl φ M Mgm
106 105 adantr φ m M Mgm
107 52 6 mulgnncl M Mgm m F B m × ˙ F B
108 106 71 78 107 syl3anc φ m m × ˙ F B
109 108 adantr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m × ˙ F B
110 9 ad2antrr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F F B
111 1 2 100 4 101 102 109 110 psdmul φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m × ˙ F ˙ F = I mPSDer R X m × ˙ F ˙ F + S m × ˙ F ˙ I mPSDer R X F
112 2 3 100 mulgnnp1 m m × ˙ F B m + 1 · ˙ m × ˙ F = m · ˙ m × ˙ F + S m × ˙ F
113 71 108 112 syl2anc φ m m + 1 · ˙ m × ˙ F = m · ˙ m × ˙ F + S m × ˙ F
114 113 oveq1d φ m m + 1 · ˙ m × ˙ F ˙ I mPSDer R X F = m · ˙ m × ˙ F + S m × ˙ F ˙ I mPSDer R X F
115 2 3 70 72 108 mulgcld φ m m · ˙ m × ˙ F B
116 2 100 4 73 115 108 81 ringdird φ m m · ˙ m × ˙ F + S m × ˙ F ˙ I mPSDer R X F = m · ˙ m × ˙ F ˙ I mPSDer R X F + S m × ˙ F ˙ I mPSDer R X F
117 114 116 eqtrd φ m m + 1 · ˙ m × ˙ F ˙ I mPSDer R X F = m · ˙ m × ˙ F ˙ I mPSDer R X F + S m × ˙ F ˙ I mPSDer R X F
118 117 adantr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m + 1 · ˙ m × ˙ F ˙ I mPSDer R X F = m · ˙ m × ˙ F ˙ I mPSDer R X F + S m × ˙ F ˙ I mPSDer R X F
119 99 111 118 3eqtr4d φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m × ˙ F ˙ F = m + 1 · ˙ m × ˙ F ˙ I mPSDer R X F
120 simplr φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m
121 52 6 86 mulgnnp1 m F B m + 1 × ˙ F = m × ˙ F ˙ F
122 120 110 121 syl2anc φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m + 1 × ˙ F = m × ˙ F ˙ F
123 122 fveq2d φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m + 1 × ˙ F = I mPSDer R X m × ˙ F ˙ F
124 120 nncnd φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m
125 pncan1 m m + 1 - 1 = m
126 124 125 syl φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m + 1 - 1 = m
127 126 oveq1d φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m + 1 - 1 × ˙ F = m × ˙ F
128 127 oveq2d φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m + 1 · ˙ m + 1 - 1 × ˙ F = m + 1 · ˙ m × ˙ F
129 128 oveq1d φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F m + 1 · ˙ m + 1 - 1 × ˙ F ˙ I mPSDer R X F = m + 1 · ˙ m × ˙ F ˙ I mPSDer R X F
130 119 123 129 3eqtr4d φ m I mPSDer R X m × ˙ F = m · ˙ m 1 × ˙ F ˙ I mPSDer R X F I mPSDer R X m + 1 × ˙ F = m + 1 · ˙ m + 1 - 1 × ˙ F ˙ I mPSDer R X F
131 19 26 33 40 65 130 nnindd φ N I mPSDer R X N × ˙ F = N · ˙ N 1 × ˙ F ˙ I mPSDer R X F
132 10 131 mpdan φ I mPSDer R X N × ˙ F = N · ˙ N 1 × ˙ F ˙ I mPSDer R X F