| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caofref.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
caofref.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 3 |
|
caofcom.3 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) |
| 4 |
|
caofidlcan.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑥 𝑅 𝑦 ) = 𝑦 ↔ 𝑥 = 0 ) ) |
| 5 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 6 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 7 |
5 6
|
jca |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) ) |
| 8 |
4
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) = 𝑦 ↔ 𝑥 = 0 ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑥 𝑅 𝑦 ) = 𝑦 ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) = 𝑦 ) ) |
| 11 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 = 0 ↔ ( 𝐹 ‘ 𝑤 ) = 0 ) ) |
| 12 |
10 11
|
bibi12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝑥 𝑅 𝑦 ) = 𝑦 ↔ 𝑥 = 0 ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑤 ) = 0 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) |
| 14 |
|
id |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → 𝑦 = ( 𝐺 ‘ 𝑤 ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) = 𝑦 ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 16 |
15
|
bibi1d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑤 ) = 0 ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = 0 ) ) ) |
| 17 |
12 16
|
rspc2v |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) = 𝑦 ↔ 𝑥 = 0 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = 0 ) ) ) |
| 18 |
8 17
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = 0 ) ) |
| 19 |
7 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = 0 ) ) |
| 20 |
19
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( 𝐺 ‘ 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) = 0 ) ) |
| 21 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ∈ V ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ∈ V ) |
| 23 |
|
mpteqb |
⊢ ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ∈ V → ( ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 25 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 26 |
|
mpteqb |
⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 → ( ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) = ( 𝑤 ∈ 𝐴 ↦ 0 ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) = 0 ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) = ( 𝑤 ∈ 𝐴 ↦ 0 ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) = 0 ) ) |
| 28 |
20 24 27
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) = ( 𝑤 ∈ 𝐴 ↦ 0 ) ) ) |
| 29 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
| 30 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
| 31 |
1 5 6 29 30
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 32 |
31 30
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) = 𝐺 ↔ ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 33 |
|
fconstmpt |
⊢ ( 𝐴 × { 0 } ) = ( 𝑤 ∈ 𝐴 ↦ 0 ) |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { 0 } ) = ( 𝑤 ∈ 𝐴 ↦ 0 ) ) |
| 35 |
29 34
|
eqeq12d |
⊢ ( 𝜑 → ( 𝐹 = ( 𝐴 × { 0 } ) ↔ ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) = ( 𝑤 ∈ 𝐴 ↦ 0 ) ) ) |
| 36 |
28 32 35
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) = 𝐺 ↔ 𝐹 = ( 𝐴 × { 0 } ) ) ) |