| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psdascl.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psdascl.z |  |-  .0. = ( 0g ` S ) | 
						
							| 3 |  | psdascl.a |  |-  A = ( algSc ` S ) | 
						
							| 4 |  | psdascl.b |  |-  B = ( Base ` R ) | 
						
							| 5 |  | psdascl.i |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | psdascl.r |  |-  ( ph -> R e. CRing ) | 
						
							| 7 |  | psdascl.x |  |-  ( ph -> X e. I ) | 
						
							| 8 |  | psdascl.c |  |-  ( ph -> C e. B ) | 
						
							| 9 | 1 5 6 | psrsca |  |-  ( ph -> R = ( Scalar ` S ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 11 | 4 10 | eqtrid |  |-  ( ph -> B = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 12 | 8 11 | eleqtrd |  |-  ( ph -> C e. ( Base ` ( Scalar ` S ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Scalar ` S ) = ( Scalar ` S ) | 
						
							| 14 |  | eqid |  |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) | 
						
							| 15 |  | eqid |  |-  ( .s ` S ) = ( .s ` S ) | 
						
							| 16 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 17 | 3 13 14 15 16 | asclval |  |-  ( C e. ( Base ` ( Scalar ` S ) ) -> ( A ` C ) = ( C ( .s ` S ) ( 1r ` S ) ) ) | 
						
							| 18 | 12 17 | syl |  |-  ( ph -> ( A ` C ) = ( C ( .s ` S ) ( 1r ` S ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( A ` C ) ) = ( ( ( I mPSDer R ) ` X ) ` ( C ( .s ` S ) ( 1r ` S ) ) ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 21 | 6 | crngringd |  |-  ( ph -> R e. Ring ) | 
						
							| 22 | 1 5 21 | psrring |  |-  ( ph -> S e. Ring ) | 
						
							| 23 | 20 16 | ringidcl |  |-  ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> ( 1r ` S ) e. ( Base ` S ) ) | 
						
							| 25 | 1 20 15 4 6 7 24 8 | psdvsca |  |-  ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( C ( .s ` S ) ( 1r ` S ) ) ) = ( C ( .s ` S ) ( ( ( I mPSDer R ) ` X ) ` ( 1r ` S ) ) ) ) | 
						
							| 26 | 1 16 2 5 6 7 | psd1 |  |-  ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( 1r ` S ) ) = .0. ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ph -> ( C ( .s ` S ) ( ( ( I mPSDer R ) ` X ) ` ( 1r ` S ) ) ) = ( C ( .s ` S ) .0. ) ) | 
						
							| 28 | 1 5 21 | psrlmod |  |-  ( ph -> S e. LMod ) | 
						
							| 29 | 13 15 14 2 | lmodvs0 |  |-  ( ( S e. LMod /\ C e. ( Base ` ( Scalar ` S ) ) ) -> ( C ( .s ` S ) .0. ) = .0. ) | 
						
							| 30 | 28 12 29 | syl2anc |  |-  ( ph -> ( C ( .s ` S ) .0. ) = .0. ) | 
						
							| 31 | 27 30 | eqtrd |  |-  ( ph -> ( C ( .s ` S ) ( ( ( I mPSDer R ) ` X ) ` ( 1r ` S ) ) ) = .0. ) | 
						
							| 32 | 19 25 31 | 3eqtrd |  |-  ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( A ` C ) ) = .0. ) |