Metamath Proof Explorer


Theorem psmet0

Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion psmet0 ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 elfvex ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V )
2 ispsmet ( 𝑋 ∈ V → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏𝑋𝑐𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) )
3 1 2 syl ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏𝑋𝑐𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) )
4 3 ibi ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏𝑋𝑐𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) )
5 4 simprd ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏𝑋𝑐𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) )
6 5 r19.21bi ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎𝑋 ) → ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏𝑋𝑐𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) )
7 6 simpld ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎𝑋 ) → ( 𝑎 𝐷 𝑎 ) = 0 )
8 7 ralrimiva ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎𝑋 ( 𝑎 𝐷 𝑎 ) = 0 )
9 id ( 𝑎 = 𝐴𝑎 = 𝐴 )
10 9 9 oveq12d ( 𝑎 = 𝐴 → ( 𝑎 𝐷 𝑎 ) = ( 𝐴 𝐷 𝐴 ) )
11 10 eqeq1d ( 𝑎 = 𝐴 → ( ( 𝑎 𝐷 𝑎 ) = 0 ↔ ( 𝐴 𝐷 𝐴 ) = 0 ) )
12 11 rspcv ( 𝐴𝑋 → ( ∀ 𝑎𝑋 ( 𝑎 𝐷 𝑎 ) = 0 → ( 𝐴 𝐷 𝐴 ) = 0 ) )
13 8 12 mpan9 ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 )