Metamath Proof Explorer


Theorem pwsinvg

Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsgrp.y 𝑌 = ( 𝑅s 𝐼 )
pwsinvg.b 𝐵 = ( Base ‘ 𝑌 )
pwsinvg.m 𝑀 = ( invg𝑅 )
pwsinvg.n 𝑁 = ( invg𝑌 )
Assertion pwsinvg ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( 𝑁𝑋 ) = ( 𝑀𝑋 ) )

Proof

Step Hyp Ref Expression
1 pwsgrp.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsinvg.b 𝐵 = ( Base ‘ 𝑌 )
3 pwsinvg.m 𝑀 = ( invg𝑅 )
4 pwsinvg.n 𝑁 = ( invg𝑌 )
5 eqid ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) )
6 simp2 ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝐼𝑉 )
7 fvexd ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( Scalar ‘ 𝑅 ) ∈ V )
8 simp1 ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑅 ∈ Grp )
9 fconst6g ( 𝑅 ∈ Grp → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Grp )
10 8 9 syl ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Grp )
11 eqid ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
12 eqid ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
13 simp3 ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑋𝐵 )
14 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
15 1 14 pwsval ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
16 15 3adant3 ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
17 16 fveq2d ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
18 2 17 syl5eq ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝐵 = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
19 13 18 eleqtrd ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑋 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
20 5 6 7 10 11 12 19 prdsinvgd ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) = ( 𝑥𝐼 ↦ ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋𝑥 ) ) ) )
21 fvconst2g ( ( 𝑅 ∈ Grp ∧ 𝑥𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 )
22 8 21 sylan ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) ∧ 𝑥𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 )
23 22 fveq2d ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) ∧ 𝑥𝐼 ) → ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( invg𝑅 ) )
24 23 3 eqtr4di ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) ∧ 𝑥𝐼 ) → ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = 𝑀 )
25 24 fveq1d ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) ∧ 𝑥𝐼 ) → ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋𝑥 ) ) = ( 𝑀 ‘ ( 𝑋𝑥 ) ) )
26 25 mpteq2dva ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( 𝑥𝐼 ↦ ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑀 ‘ ( 𝑋𝑥 ) ) ) )
27 20 26 eqtrd ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) = ( 𝑥𝐼 ↦ ( 𝑀 ‘ ( 𝑋𝑥 ) ) ) )
28 16 fveq2d ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( invg𝑌 ) = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
29 4 28 syl5eq ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑁 = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
30 29 fveq1d ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( 𝑁𝑋 ) = ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) )
31 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
32 1 31 2 8 6 13 pwselbas ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
33 32 ffvelrnda ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) ∧ 𝑥𝐼 ) → ( 𝑋𝑥 ) ∈ ( Base ‘ 𝑅 ) )
34 32 feqmptd ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑋 = ( 𝑥𝐼 ↦ ( 𝑋𝑥 ) ) )
35 31 3 grpinvf ( 𝑅 ∈ Grp → 𝑀 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) )
36 8 35 syl ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑀 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) )
37 36 feqmptd ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → 𝑀 = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑀𝑦 ) ) )
38 fveq2 ( 𝑦 = ( 𝑋𝑥 ) → ( 𝑀𝑦 ) = ( 𝑀 ‘ ( 𝑋𝑥 ) ) )
39 33 34 37 38 fmptco ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( 𝑀𝑋 ) = ( 𝑥𝐼 ↦ ( 𝑀 ‘ ( 𝑋𝑥 ) ) ) )
40 27 30 39 3eqtr4d ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵 ) → ( 𝑁𝑋 ) = ( 𝑀𝑋 ) )