| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsgrp.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pwsinvg.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
pwsinvg.m |
⊢ 𝑀 = ( invg ‘ 𝑅 ) |
| 4 |
|
pwsinvg.n |
⊢ 𝑁 = ( invg ‘ 𝑌 ) |
| 5 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) |
| 6 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
| 7 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( Scalar ‘ 𝑅 ) ∈ V ) |
| 8 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 9 |
|
fconst6g |
⊢ ( 𝑅 ∈ Grp → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Grp ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Grp ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 12 |
|
eqid |
⊢ ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 13 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 14 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
| 15 |
1 14
|
pwsval |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 18 |
2 17
|
eqtrid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝐵 = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 19 |
13 18
|
eleqtrd |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 20 |
5 6 7 10 11 12 19
|
prdsinvgd |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 21 |
|
fvconst2g |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 22 |
8 21
|
sylan |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 23 |
22
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( invg ‘ 𝑅 ) ) |
| 24 |
23 3
|
eqtr4di |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = 𝑀 ) |
| 25 |
24
|
fveq1d |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
| 26 |
25
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 27 |
20 26
|
eqtrd |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 28 |
16
|
fveq2d |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( invg ‘ 𝑌 ) = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 29 |
4 28
|
eqtrid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑁 = ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 30 |
29
|
fveq1d |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ‘ 𝑋 ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 32 |
1 31 2 8 6 13
|
pwselbas |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 33 |
32
|
ffvelcdmda |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
32
|
feqmptd |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑥 ) ) ) |
| 35 |
31 3
|
grpinvf |
⊢ ( 𝑅 ∈ Grp → 𝑀 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 36 |
8 35
|
syl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑀 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 37 |
36
|
feqmptd |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑀 = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑀 ‘ 𝑦 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑋 ‘ 𝑥 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
| 39 |
33 34 37 38
|
fmptco |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ∘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 40 |
27 30 39
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝑀 ∘ 𝑋 ) ) |