Metamath Proof Explorer


Theorem relexpfldd

Description: The field of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypothesis relexpfldd.1 ( 𝜑𝑁 ∈ ℕ0 )
Assertion relexpfldd ( 𝜑 ( 𝑅𝑟 𝑁 ) ⊆ 𝑅 )

Proof

Step Hyp Ref Expression
1 relexpfldd.1 ( 𝜑𝑁 ∈ ℕ0 )
2 relexpfld ( ( 𝑁 ∈ ℕ0𝑅 ∈ V ) → ( 𝑅𝑟 𝑁 ) ⊆ 𝑅 )
3 1 2 sylan ( ( 𝜑𝑅 ∈ V ) → ( 𝑅𝑟 𝑁 ) ⊆ 𝑅 )
4 3 ex ( 𝜑 → ( 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) ⊆ 𝑅 ) )
5 reldmrelexp Rel dom ↑𝑟
6 5 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) = ∅ )
7 6 unieqd ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) = ∅ )
8 uni0 ∅ = ∅
9 7 8 eqtrdi ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) = ∅ )
10 9 unieqd ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) = ∅ )
11 10 8 eqtrdi ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) = ∅ )
12 0ss ∅ ⊆ 𝑅
13 11 12 eqsstrdi ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) ⊆ 𝑅 )
14 4 13 pm2.61d1 ( 𝜑 ( 𝑅𝑟 𝑁 ) ⊆ 𝑅 )