| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relexpfldd.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
relexpfld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ V ) → ∪ ∪ ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ ∪ ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) |
| 4 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∈ V → ∪ ∪ ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) ) |
| 5 |
|
reldmrelexp |
⊢ Rel dom ↑𝑟 |
| 6 |
5
|
ovprc1 |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 ↑𝑟 𝑁 ) = ∅ ) |
| 7 |
6
|
unieqd |
⊢ ( ¬ 𝑅 ∈ V → ∪ ( 𝑅 ↑𝑟 𝑁 ) = ∪ ∅ ) |
| 8 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 9 |
7 8
|
eqtrdi |
⊢ ( ¬ 𝑅 ∈ V → ∪ ( 𝑅 ↑𝑟 𝑁 ) = ∅ ) |
| 10 |
9
|
unieqd |
⊢ ( ¬ 𝑅 ∈ V → ∪ ∪ ( 𝑅 ↑𝑟 𝑁 ) = ∪ ∅ ) |
| 11 |
10 8
|
eqtrdi |
⊢ ( ¬ 𝑅 ∈ V → ∪ ∪ ( 𝑅 ↑𝑟 𝑁 ) = ∅ ) |
| 12 |
|
0ss |
⊢ ∅ ⊆ ∪ ∪ 𝑅 |
| 13 |
11 12
|
eqsstrdi |
⊢ ( ¬ 𝑅 ∈ V → ∪ ∪ ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) |
| 14 |
4 13
|
pm2.61d1 |
⊢ ( 𝜑 → ∪ ∪ ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) |