Metamath Proof Explorer


Theorem resubcnnred

Description: The difference of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023)

Ref Expression
Hypotheses recnaddnred.a ( 𝜑𝐴 ∈ ℝ )
recnaddnred.b ( 𝜑𝐵 ∈ ( ℂ ∖ ℝ ) )
Assertion resubcnnred ( 𝜑 → ( 𝐴𝐵 ) ∉ ℝ )

Proof

Step Hyp Ref Expression
1 recnaddnred.a ( 𝜑𝐴 ∈ ℝ )
2 recnaddnred.b ( 𝜑𝐵 ∈ ( ℂ ∖ ℝ ) )
3 2 eldifbd ( 𝜑 → ¬ 𝐵 ∈ ℝ )
4 df-nel ( ( 𝐴𝐵 ) ∉ ℝ ↔ ¬ ( 𝐴𝐵 ) ∈ ℝ )
5 1 recnd ( 𝜑𝐴 ∈ ℂ )
6 2 eldifad ( 𝜑𝐵 ∈ ℂ )
7 5 6 subcld ( 𝜑 → ( 𝐴𝐵 ) ∈ ℂ )
8 reim0b ( ( 𝐴𝐵 ) ∈ ℂ → ( ( 𝐴𝐵 ) ∈ ℝ ↔ ( ℑ ‘ ( 𝐴𝐵 ) ) = 0 ) )
9 7 8 syl ( 𝜑 → ( ( 𝐴𝐵 ) ∈ ℝ ↔ ( ℑ ‘ ( 𝐴𝐵 ) ) = 0 ) )
10 1 reim0d ( 𝜑 → ( ℑ ‘ 𝐴 ) = 0 )
11 10 oveq1d ( 𝜑 → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) = ( 0 − ( ℑ ‘ 𝐵 ) ) )
12 df-neg - ( ℑ ‘ 𝐵 ) = ( 0 − ( ℑ ‘ 𝐵 ) )
13 11 12 eqtr4di ( 𝜑 → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) = - ( ℑ ‘ 𝐵 ) )
14 13 eqeq1d ( 𝜑 → ( ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) = 0 ↔ - ( ℑ ‘ 𝐵 ) = 0 ) )
15 5 6 imsubd ( 𝜑 → ( ℑ ‘ ( 𝐴𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) )
16 15 eqeq1d ( 𝜑 → ( ( ℑ ‘ ( 𝐴𝐵 ) ) = 0 ↔ ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) = 0 ) )
17 reim0b ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ℝ ↔ ( ℑ ‘ 𝐵 ) = 0 ) )
18 6 17 syl ( 𝜑 → ( 𝐵 ∈ ℝ ↔ ( ℑ ‘ 𝐵 ) = 0 ) )
19 6 imcld ( 𝜑 → ( ℑ ‘ 𝐵 ) ∈ ℝ )
20 19 recnd ( 𝜑 → ( ℑ ‘ 𝐵 ) ∈ ℂ )
21 20 negeq0d ( 𝜑 → ( ( ℑ ‘ 𝐵 ) = 0 ↔ - ( ℑ ‘ 𝐵 ) = 0 ) )
22 18 21 bitrd ( 𝜑 → ( 𝐵 ∈ ℝ ↔ - ( ℑ ‘ 𝐵 ) = 0 ) )
23 14 16 22 3bitr4d ( 𝜑 → ( ( ℑ ‘ ( 𝐴𝐵 ) ) = 0 ↔ 𝐵 ∈ ℝ ) )
24 9 23 bitrd ( 𝜑 → ( ( 𝐴𝐵 ) ∈ ℝ ↔ 𝐵 ∈ ℝ ) )
25 24 notbid ( 𝜑 → ( ¬ ( 𝐴𝐵 ) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ ) )
26 4 25 syl5bb ( 𝜑 → ( ( 𝐴𝐵 ) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ ) )
27 3 26 mpbird ( 𝜑 → ( 𝐴𝐵 ) ∉ ℝ )