| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recnaddnred.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | recnaddnred.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ℂ  ∖  ℝ ) ) | 
						
							| 3 | 2 | eldifbd | ⊢ ( 𝜑  →  ¬  𝐵  ∈  ℝ ) | 
						
							| 4 |  | df-nel | ⊢ ( ( 𝐴  −  𝐵 )  ∉  ℝ  ↔  ¬  ( 𝐴  −  𝐵 )  ∈  ℝ ) | 
						
							| 5 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 2 | eldifad | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 7 | 5 6 | subcld | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 8 |  | reim0b | ⊢ ( ( 𝐴  −  𝐵 )  ∈  ℂ  →  ( ( 𝐴  −  𝐵 )  ∈  ℝ  ↔  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  0 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐵 )  ∈  ℝ  ↔  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  0 ) ) | 
						
							| 10 | 1 | reim0d | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  =  0 ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  =  ( 0  −  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 12 |  | df-neg | ⊢ - ( ℑ ‘ 𝐵 )  =  ( 0  −  ( ℑ ‘ 𝐵 ) ) | 
						
							| 13 | 11 12 | eqtr4di | ⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  =  - ( ℑ ‘ 𝐵 ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  =  0  ↔  - ( ℑ ‘ 𝐵 )  =  0 ) ) | 
						
							| 15 | 5 6 | imsubd | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  0  ↔  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  =  0 ) ) | 
						
							| 17 |  | reim0b | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  ∈  ℝ  ↔  ( ℑ ‘ 𝐵 )  =  0 ) ) | 
						
							| 18 | 6 17 | syl | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ↔  ( ℑ ‘ 𝐵 )  =  0 ) ) | 
						
							| 19 | 6 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 21 | 20 | negeq0d | ⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐵 )  =  0  ↔  - ( ℑ ‘ 𝐵 )  =  0 ) ) | 
						
							| 22 | 18 21 | bitrd | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ↔  - ( ℑ ‘ 𝐵 )  =  0 ) ) | 
						
							| 23 | 14 16 22 | 3bitr4d | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  0  ↔  𝐵  ∈  ℝ ) ) | 
						
							| 24 | 9 23 | bitrd | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐵 )  ∈  ℝ  ↔  𝐵  ∈  ℝ ) ) | 
						
							| 25 | 24 | notbid | ⊢ ( 𝜑  →  ( ¬  ( 𝐴  −  𝐵 )  ∈  ℝ  ↔  ¬  𝐵  ∈  ℝ ) ) | 
						
							| 26 | 4 25 | bitrid | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐵 )  ∉  ℝ  ↔  ¬  𝐵  ∈  ℝ ) ) | 
						
							| 27 | 3 26 | mpbird | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  ∉  ℝ ) |