Metamath Proof Explorer


Theorem resubcnnred

Description: The difference of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023)

Ref Expression
Hypotheses recnaddnred.a φA
recnaddnred.b φB
Assertion resubcnnred φAB

Proof

Step Hyp Ref Expression
1 recnaddnred.a φA
2 recnaddnred.b φB
3 2 eldifbd φ¬B
4 df-nel AB¬AB
5 1 recnd φA
6 2 eldifad φB
7 5 6 subcld φAB
8 reim0b ABABAB=0
9 7 8 syl φABAB=0
10 1 reim0d φA=0
11 10 oveq1d φAB=0B
12 df-neg B=0B
13 11 12 eqtr4di φAB=B
14 13 eqeq1d φAB=0B=0
15 5 6 imsubd φAB=AB
16 15 eqeq1d φAB=0AB=0
17 reim0b BBB=0
18 6 17 syl φBB=0
19 6 imcld φB
20 19 recnd φB
21 20 negeq0d φB=0B=0
22 18 21 bitrd φBB=0
23 14 16 22 3bitr4d φAB=0B
24 9 23 bitrd φABB
25 24 notbid φ¬AB¬B
26 4 25 bitrid φAB¬B
27 3 26 mpbird φAB