| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuind.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | reuind.2 | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  𝐵 ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  𝐶  ↔  𝐵  ∈  𝐶 ) ) | 
						
							| 4 | 3 1 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ↔  ( 𝐵  ∈  𝐶  ∧  𝜓 ) ) ) | 
						
							| 5 | 4 | cbvexvw | ⊢ ( ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 )  ↔  ∃ 𝑦 ( 𝐵  ∈  𝐶  ∧  𝜓 ) ) | 
						
							| 6 |  | r19.41v | ⊢ ( ∃ 𝑧  ∈  𝐶 ( 𝑧  =  𝐵  ∧  𝜓 )  ↔  ( ∃ 𝑧  ∈  𝐶 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 7 | 6 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧  ∈  𝐶 ( 𝑧  =  𝐵  ∧  𝜓 )  ↔  ∃ 𝑦 ( ∃ 𝑧  ∈  𝐶 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 8 |  | rexcom4 | ⊢ ( ∃ 𝑧  ∈  𝐶 ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  ↔  ∃ 𝑦 ∃ 𝑧  ∈  𝐶 ( 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 9 |  | risset | ⊢ ( 𝐵  ∈  𝐶  ↔  ∃ 𝑧  ∈  𝐶 𝑧  =  𝐵 ) | 
						
							| 10 | 9 | anbi1i | ⊢ ( ( 𝐵  ∈  𝐶  ∧  𝜓 )  ↔  ( ∃ 𝑧  ∈  𝐶 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 11 | 10 | exbii | ⊢ ( ∃ 𝑦 ( 𝐵  ∈  𝐶  ∧  𝜓 )  ↔  ∃ 𝑦 ( ∃ 𝑧  ∈  𝐶 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 12 | 7 8 11 | 3bitr4ri | ⊢ ( ∃ 𝑦 ( 𝐵  ∈  𝐶  ∧  𝜓 )  ↔  ∃ 𝑧  ∈  𝐶 ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 13 | 5 12 | bitri | ⊢ ( ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 )  ↔  ∃ 𝑧  ∈  𝐶 ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 14 |  | eqeq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 ) ) | 
						
							| 15 | 14 | imim2i | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  →  ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 ) ) ) | 
						
							| 16 |  | biimpr | ⊢ ( ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 )  →  ( 𝑧  =  𝐵  →  𝑧  =  𝐴 ) ) | 
						
							| 17 | 16 | imim2i | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 ) )  →  ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( 𝑧  =  𝐵  →  𝑧  =  𝐴 ) ) ) | 
						
							| 18 |  | an31 | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ∧  𝑧  =  𝐵 )  ↔  ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ∧  ( 𝐴  ∈  𝐶  ∧  𝜑 ) ) ) | 
						
							| 19 | 18 | imbi1i | ⊢ ( ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ∧  𝑧  =  𝐵 )  →  𝑧  =  𝐴 )  ↔  ( ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ∧  ( 𝐴  ∈  𝐶  ∧  𝜑 ) )  →  𝑧  =  𝐴 ) ) | 
						
							| 20 |  | impexp | ⊢ ( ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ∧  𝑧  =  𝐵 )  →  𝑧  =  𝐴 )  ↔  ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( 𝑧  =  𝐵  →  𝑧  =  𝐴 ) ) ) | 
						
							| 21 |  | impexp | ⊢ ( ( ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ∧  ( 𝐴  ∈  𝐶  ∧  𝜑 ) )  →  𝑧  =  𝐴 )  ↔  ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 22 | 19 20 21 | 3bitr3i | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( 𝑧  =  𝐵  →  𝑧  =  𝐴 ) )  ↔  ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 23 | 17 22 | sylib | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 ) )  →  ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 24 | 15 23 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  →  ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 25 | 24 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 26 |  | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) )  ↔  ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 27 |  | an12 | ⊢ ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ↔  ( 𝐵  ∈  𝐶  ∧  ( 𝑧  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 28 |  | eleq1 | ⊢ ( 𝑧  =  𝐵  →  ( 𝑧  ∈  𝐶  ↔  𝐵  ∈  𝐶 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝑧  ∈  𝐶  ↔  𝐵  ∈  𝐶 ) ) | 
						
							| 30 | 29 | pm5.32ri | ⊢ ( ( 𝑧  ∈  𝐶  ∧  ( 𝑧  =  𝐵  ∧  𝜓 ) )  ↔  ( 𝐵  ∈  𝐶  ∧  ( 𝑧  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 31 | 27 30 | bitr4i | ⊢ ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ↔  ( 𝑧  ∈  𝐶  ∧  ( 𝑧  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 32 | 31 | exbii | ⊢ ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝐶  ∧  ( 𝑧  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 33 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑧  ∈  𝐶  ∧  ( 𝑧  =  𝐵  ∧  𝜓 ) )  ↔  ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 34 | 32 33 | bitri | ⊢ ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  ↔  ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 35 | 34 | imbi1i | ⊢ ( ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) )  ↔  ( ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 36 | 26 35 | bitri | ⊢ ( ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) )  ↔  ( ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 37 | 36 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) )  ↔  ∀ 𝑥 ( ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 38 |  | 19.21v | ⊢ ( ∀ 𝑥 ( ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) )  ↔  ( ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) )  →  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 39 | 37 38 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) )  ↔  ( ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) )  →  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 40 | 25 39 | sylib | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  →  ( ( 𝑧  ∈  𝐶  ∧  ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) )  →  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 41 | 40 | expd | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  →  ( 𝑧  ∈  𝐶  →  ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) ) | 
						
							| 42 | 41 | reximdvai | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  →  ( ∃ 𝑧  ∈  𝐶 ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ∃ 𝑧  ∈  𝐶 ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 43 | 13 42 | biimtrid | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  →  ( ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  ∃ 𝑧  ∈  𝐶 ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  ∧  ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 ) )  →  ∃ 𝑧  ∈  𝐶 ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) | 
						
							| 45 |  | pm4.24 | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ↔  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐴  ∈  𝐶  ∧  𝜑 ) ) ) | 
						
							| 46 | 45 | biimpi | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐴  ∈  𝐶  ∧  𝜑 ) ) ) | 
						
							| 47 |  | anim12 | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐴  ∈  𝐶  ∧  𝜑 ) )  →  ( 𝑧  =  𝐴  ∧  𝑤  =  𝐴 ) ) ) | 
						
							| 48 |  | eqtr3 | ⊢ ( ( 𝑧  =  𝐴  ∧  𝑤  =  𝐴 )  →  𝑧  =  𝑤 ) | 
						
							| 49 | 46 47 48 | syl56 | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝑤 ) ) | 
						
							| 50 | 49 | alanimi | ⊢ ( ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝑤 ) ) | 
						
							| 51 |  | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝑤 )  ↔  ( ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝑤 ) ) | 
						
							| 52 | 50 51 | sylib | ⊢ ( ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  ( ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝑤 ) ) | 
						
							| 53 | 52 | com12 | ⊢ ( ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  ( ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) | 
						
							| 54 | 53 | a1d | ⊢ ( ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  ( ( 𝑧  ∈  𝐶  ∧  𝑤  ∈  𝐶 )  →  ( ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) ) | 
						
							| 55 | 54 | ralrimivv | ⊢ ( ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐶 ( ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  ∧  ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 ) )  →  ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐶 ( ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) | 
						
							| 57 |  | eqeq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  =  𝐴  ↔  𝑤  =  𝐴 ) ) | 
						
							| 58 | 57 | imbi2d | ⊢ ( 𝑧  =  𝑤  →  ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ↔  ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) ) ) | 
						
							| 59 | 58 | albidv | ⊢ ( 𝑧  =  𝑤  →  ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ↔  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) ) ) | 
						
							| 60 | 59 | reu4 | ⊢ ( ∃! 𝑧  ∈  𝐶 ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ↔  ( ∃ 𝑧  ∈  𝐶 ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐶 ( ( ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) ) | 
						
							| 61 | 44 56 60 | sylanbrc | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐶  ∧  𝜓 ) )  →  𝐴  =  𝐵 )  ∧  ∃ 𝑥 ( 𝐴  ∈  𝐶  ∧  𝜑 ) )  →  ∃! 𝑧  ∈  𝐶 ∀ 𝑥 ( ( 𝐴  ∈  𝐶  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) |