| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexunirn.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 2 |  | rexunirn.2 | ⊢ ( 𝑥  ∈  𝐴  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 4 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 5 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 6 | 5 | anbi2i | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝜑 )  ↔  ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 7 | 4 6 | bitr4i | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 9 | 3 8 | bitr4i | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 10 | 1 | elrnmpt1 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑉 )  →  𝐵  ∈  ran  𝐹 ) | 
						
							| 11 | 2 10 | mpdan | ⊢ ( 𝑥  ∈  𝐴  →  𝐵  ∈  ran  𝐹 ) | 
						
							| 12 |  | eleq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑦  ∈  𝑏  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 13 | 12 | anbi1d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝑦  ∈  𝑏  ∧  𝜑 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 14 | 13 | rspcev | ⊢ ( ( 𝐵  ∈  ran  𝐹  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  →  ∃ 𝑏  ∈  ran  𝐹 ( 𝑦  ∈  𝑏  ∧  𝜑 ) ) | 
						
							| 15 | 11 14 | sylan | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  →  ∃ 𝑏  ∈  ran  𝐹 ( 𝑦  ∈  𝑏  ∧  𝜑 ) ) | 
						
							| 16 |  | r19.41v | ⊢ ( ∃ 𝑏  ∈  ran  𝐹 ( 𝑦  ∈  𝑏  ∧  𝜑 )  ↔  ( ∃ 𝑏  ∈  ran  𝐹 𝑦  ∈  𝑏  ∧  𝜑 ) ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  →  ( ∃ 𝑏  ∈  ran  𝐹 𝑦  ∈  𝑏  ∧  𝜑 ) ) | 
						
							| 18 | 17 | eximi | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  →  ∃ 𝑦 ( ∃ 𝑏  ∈  ran  𝐹 𝑦  ∈  𝑏  ∧  𝜑 ) ) | 
						
							| 19 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  ∪  ran  𝐹 𝜑  ↔  ∃ 𝑦 ( 𝑦  ∈  ∪  ran  𝐹  ∧  𝜑 ) ) | 
						
							| 20 |  | eluni2 | ⊢ ( 𝑦  ∈  ∪  ran  𝐹  ↔  ∃ 𝑏  ∈  ran  𝐹 𝑦  ∈  𝑏 ) | 
						
							| 21 | 20 | anbi1i | ⊢ ( ( 𝑦  ∈  ∪  ran  𝐹  ∧  𝜑 )  ↔  ( ∃ 𝑏  ∈  ran  𝐹 𝑦  ∈  𝑏  ∧  𝜑 ) ) | 
						
							| 22 | 21 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  ∪  ran  𝐹  ∧  𝜑 )  ↔  ∃ 𝑦 ( ∃ 𝑏  ∈  ran  𝐹 𝑦  ∈  𝑏  ∧  𝜑 ) ) | 
						
							| 23 | 19 22 | bitri | ⊢ ( ∃ 𝑦  ∈  ∪  ran  𝐹 𝜑  ↔  ∃ 𝑦 ( ∃ 𝑏  ∈  ran  𝐹 𝑦  ∈  𝑏  ∧  𝜑 ) ) | 
						
							| 24 | 18 23 | sylibr | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  →  ∃ 𝑦  ∈  ∪  ran  𝐹 𝜑 ) | 
						
							| 25 | 24 | exlimiv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  →  ∃ 𝑦  ∈  ∪  ran  𝐹 𝜑 ) | 
						
							| 26 | 9 25 | sylbi | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ∃ 𝑦  ∈  ∪  ran  𝐹 𝜑 ) |