Step |
Hyp |
Ref |
Expression |
1 |
|
rexunirn.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
rexunirn.2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉 ) |
3 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
4 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
5 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
7 |
4 6
|
bitr4i |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
9 |
3 8
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
10 |
1
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ran 𝐹 ) |
11 |
2 10
|
mpdan |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ran 𝐹 ) |
12 |
|
eleq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝐵 ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑦 ∈ 𝑏 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
14 |
13
|
rspcev |
⊢ ( ( 𝐵 ∈ ran 𝐹 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑏 ∈ ran 𝐹 ( 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
15 |
11 14
|
sylan |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑏 ∈ ran 𝐹 ( 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
16 |
|
r19.41v |
⊢ ( ∃ 𝑏 ∈ ran 𝐹 ( 𝑦 ∈ 𝑏 ∧ 𝜑 ) ↔ ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
17 |
15 16
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
18 |
17
|
eximi |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
19 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ ∪ ran 𝐹 ∧ 𝜑 ) ) |
20 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ ran 𝐹 ↔ ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ) |
21 |
20
|
anbi1i |
⊢ ( ( 𝑦 ∈ ∪ ran 𝐹 ∧ 𝜑 ) ↔ ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
22 |
21
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ ∪ ran 𝐹 ∧ 𝜑 ) ↔ ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
23 |
19 22
|
bitri |
⊢ ( ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ↔ ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
24 |
18 23
|
sylibr |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ) |
25 |
24
|
exlimiv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ) |
26 |
9 25
|
sylbi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ) |