| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexunirn.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 2 |
|
rexunirn.2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉 ) |
| 3 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 4 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 5 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 6 |
5
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 7 |
4 6
|
bitr4i |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 8 |
7
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 9 |
3 8
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 10 |
1
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ran 𝐹 ) |
| 11 |
2 10
|
mpdan |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ran 𝐹 ) |
| 12 |
|
eleq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝐵 ) ) |
| 13 |
12
|
anbi1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑦 ∈ 𝑏 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 14 |
13
|
rspcev |
⊢ ( ( 𝐵 ∈ ran 𝐹 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑏 ∈ ran 𝐹 ( 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
| 15 |
11 14
|
sylan |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑏 ∈ ran 𝐹 ( 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
| 16 |
|
r19.41v |
⊢ ( ∃ 𝑏 ∈ ran 𝐹 ( 𝑦 ∈ 𝑏 ∧ 𝜑 ) ↔ ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
| 17 |
15 16
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
| 18 |
17
|
eximi |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
| 19 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ ∪ ran 𝐹 ∧ 𝜑 ) ) |
| 20 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ ran 𝐹 ↔ ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ) |
| 21 |
20
|
anbi1i |
⊢ ( ( 𝑦 ∈ ∪ ran 𝐹 ∧ 𝜑 ) ↔ ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
| 22 |
21
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ ∪ ran 𝐹 ∧ 𝜑 ) ↔ ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
| 23 |
19 22
|
bitri |
⊢ ( ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ↔ ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑 ) ) |
| 24 |
18 23
|
sylibr |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ) |
| 25 |
24
|
exlimiv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ) |
| 26 |
9 25
|
sylbi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ ∪ ran 𝐹 𝜑 ) |