Metamath Proof Explorer


Theorem rexunirn

Description: Restricted existential quantification over the union of the range of a function. Cf. rexrn and eluni2 . (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses rexunirn.1 𝐹 = ( 𝑥𝐴𝐵 )
rexunirn.2 ( 𝑥𝐴𝐵𝑉 )
Assertion rexunirn ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑦 ran 𝐹 𝜑 )

Proof

Step Hyp Ref Expression
1 rexunirn.1 𝐹 = ( 𝑥𝐴𝐵 )
2 rexunirn.2 ( 𝑥𝐴𝐵𝑉 )
3 df-rex ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 𝜑 ) )
4 19.42v ( ∃ 𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑦 ( 𝑦𝐵𝜑 ) ) )
5 df-rex ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑦 ( 𝑦𝐵𝜑 ) )
6 5 anbi2i ( ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 𝜑 ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑦 ( 𝑦𝐵𝜑 ) ) )
7 4 6 bitr4i ( ∃ 𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 𝜑 ) )
8 7 exbii ( ∃ 𝑥𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 𝜑 ) )
9 3 8 bitr4i ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) )
10 1 elrnmpt1 ( ( 𝑥𝐴𝐵𝑉 ) → 𝐵 ∈ ran 𝐹 )
11 2 10 mpdan ( 𝑥𝐴𝐵 ∈ ran 𝐹 )
12 eleq2 ( 𝑏 = 𝐵 → ( 𝑦𝑏𝑦𝐵 ) )
13 12 anbi1d ( 𝑏 = 𝐵 → ( ( 𝑦𝑏𝜑 ) ↔ ( 𝑦𝐵𝜑 ) ) )
14 13 rspcev ( ( 𝐵 ∈ ran 𝐹 ∧ ( 𝑦𝐵𝜑 ) ) → ∃ 𝑏 ∈ ran 𝐹 ( 𝑦𝑏𝜑 ) )
15 11 14 sylan ( ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) → ∃ 𝑏 ∈ ran 𝐹 ( 𝑦𝑏𝜑 ) )
16 r19.41v ( ∃ 𝑏 ∈ ran 𝐹 ( 𝑦𝑏𝜑 ) ↔ ( ∃ 𝑏 ∈ ran 𝐹 𝑦𝑏𝜑 ) )
17 15 16 sylib ( ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) → ( ∃ 𝑏 ∈ ran 𝐹 𝑦𝑏𝜑 ) )
18 17 eximi ( ∃ 𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) → ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦𝑏𝜑 ) )
19 df-rex ( ∃ 𝑦 ran 𝐹 𝜑 ↔ ∃ 𝑦 ( 𝑦 ran 𝐹𝜑 ) )
20 eluni2 ( 𝑦 ran 𝐹 ↔ ∃ 𝑏 ∈ ran 𝐹 𝑦𝑏 )
21 20 anbi1i ( ( 𝑦 ran 𝐹𝜑 ) ↔ ( ∃ 𝑏 ∈ ran 𝐹 𝑦𝑏𝜑 ) )
22 21 exbii ( ∃ 𝑦 ( 𝑦 ran 𝐹𝜑 ) ↔ ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦𝑏𝜑 ) )
23 19 22 bitri ( ∃ 𝑦 ran 𝐹 𝜑 ↔ ∃ 𝑦 ( ∃ 𝑏 ∈ ran 𝐹 𝑦𝑏𝜑 ) )
24 18 23 sylibr ( ∃ 𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) → ∃ 𝑦 ran 𝐹 𝜑 )
25 24 exlimiv ( ∃ 𝑥𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) → ∃ 𝑦 ran 𝐹 𝜑 )
26 9 25 sylbi ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑦 ran 𝐹 𝜑 )