Step |
Hyp |
Ref |
Expression |
1 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
2 |
|
isfinite4 |
⊢ ( 𝐴 ∈ Fin ↔ ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) |
3 |
2
|
biimpi |
⊢ ( 𝐴 ∈ Fin → ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) |
4 |
1 3
|
jca |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑛 = ( ♯ ‘ 𝐴 ) → ( 𝑛 ∈ ℕ0 ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑛 = ( ♯ ‘ 𝐴 ) → ( 1 ... 𝑛 ) = ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑛 = ( ♯ ‘ 𝐴 ) → ( ( 1 ... 𝑛 ) ≈ 𝐴 ↔ ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) ) |
8 |
5 7
|
anbi12d |
⊢ ( 𝑛 = ( ♯ ‘ 𝐴 ) → ( ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) ) ) |
9 |
1 4 8
|
spcedv |
⊢ ( 𝐴 ∈ Fin → ∃ 𝑛 ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
10 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( 1 ... 𝑛 ) ≈ 𝐴 ↔ ∃ 𝑛 ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
11 |
9 10
|
sylibr |
⊢ ( 𝐴 ∈ Fin → ∃ 𝑛 ∈ ℕ0 ( 1 ... 𝑛 ) ≈ 𝐴 ) |
12 |
|
hasheni |
⊢ ( ( 1 ... 𝑛 ) ≈ 𝐴 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = ( ♯ ‘ 𝐴 ) ) |
13 |
12
|
eqcomd |
⊢ ( ( 1 ... 𝑛 ) ≈ 𝐴 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ) |
14 |
|
hashfz1 |
⊢ ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
15 |
|
ovex |
⊢ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ V |
16 |
|
eqtr |
⊢ ( ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ∧ ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) → ( ♯ ‘ 𝐴 ) = 𝑛 ) |
17 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝑛 → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... 𝑛 ) ) |
18 |
|
eqeng |
⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ V → ( ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... 𝑛 ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ ( 1 ... 𝑛 ) ) ) |
19 |
17 18
|
syl5 |
⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ V → ( ( ♯ ‘ 𝐴 ) = 𝑛 → ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ ( 1 ... 𝑛 ) ) ) |
20 |
15 16 19
|
mpsyl |
⊢ ( ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ∧ ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ ( 1 ... 𝑛 ) ) |
21 |
13 14 20
|
syl2anr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ ( 1 ... 𝑛 ) ) |
22 |
|
entr |
⊢ ( ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ ( 1 ... 𝑛 ) ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) |
23 |
21 22
|
sylancom |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) |
24 |
23 2
|
sylibr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → 𝐴 ∈ Fin ) |
25 |
24
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( 1 ... 𝑛 ) ≈ 𝐴 → 𝐴 ∈ Fin ) |
26 |
11 25
|
impbii |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑛 ∈ ℕ0 ( 1 ... 𝑛 ) ≈ 𝐴 ) |