Step |
Hyp |
Ref |
Expression |
1 |
|
exmid |
⊢ ( 𝐴 = ∅ ∨ ¬ 𝐴 = ∅ ) |
2 |
1
|
biantrur |
⊢ ( 𝐴 ∈ Fin ↔ ( ( 𝐴 = ∅ ∨ ¬ 𝐴 = ∅ ) ∧ 𝐴 ∈ Fin ) ) |
3 |
|
andir |
⊢ ( ( ( 𝐴 = ∅ ∨ ¬ 𝐴 = ∅ ) ∧ 𝐴 ∈ Fin ) ↔ ( ( 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ∨ ( ¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ) ) |
4 |
2 3
|
bitri |
⊢ ( 𝐴 ∈ Fin ↔ ( ( 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ∨ ( ¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ) ) |
5 |
|
simpl |
⊢ ( ( 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 = ∅ ) |
6 |
|
0fin |
⊢ ∅ ∈ Fin |
7 |
|
eleq1a |
⊢ ( ∅ ∈ Fin → ( 𝐴 = ∅ → 𝐴 ∈ Fin ) ) |
8 |
6 7
|
ax-mp |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ Fin ) |
9 |
8
|
ancli |
⊢ ( 𝐴 = ∅ → ( 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ) |
10 |
5 9
|
impbii |
⊢ ( ( 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ↔ 𝐴 = ∅ ) |
11 |
|
rp-isfinite5 |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑛 ∈ ℕ0 ( 1 ... 𝑛 ) ≈ 𝐴 ) |
12 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( 1 ... 𝑛 ) ≈ 𝐴 ↔ ∃ 𝑛 ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
13 |
11 12
|
bitri |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑛 ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
14 |
13
|
anbi2i |
⊢ ( ( ¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ↔ ( ¬ 𝐴 = ∅ ∧ ∃ 𝑛 ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ ℕ ( 1 ... 𝑛 ) ≈ 𝐴 ↔ ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
16 |
|
en0 |
⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |
17 |
|
ensymb |
⊢ ( 𝐴 ≈ ∅ ↔ ∅ ≈ 𝐴 ) |
18 |
16 17
|
bitr3i |
⊢ ( 𝐴 = ∅ ↔ ∅ ≈ 𝐴 ) |
19 |
18
|
notbii |
⊢ ( ¬ 𝐴 = ∅ ↔ ¬ ∅ ≈ 𝐴 ) |
20 |
|
elnn0 |
⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ) |
21 |
20
|
anbi1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ↔ ( ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
22 |
|
andir |
⊢ ( ( ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ∨ ( 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) |
23 |
21 22
|
bitri |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ∨ ( 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) |
24 |
19 23
|
anbi12i |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ↔ ( ¬ ∅ ≈ 𝐴 ∧ ( ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ∨ ( 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) ) |
25 |
|
andi |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ ( ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ∨ ( 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) ↔ ( ( ¬ ∅ ≈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ∨ ( ¬ ∅ ≈ 𝐴 ∧ ( 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) ) |
26 |
24 25
|
bitri |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ↔ ( ( ¬ ∅ ≈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ∨ ( ¬ ∅ ≈ 𝐴 ∧ ( 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) ) |
27 |
|
3anass |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ↔ ( ¬ ∅ ≈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) |
28 |
|
3anass |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ↔ ( ¬ ∅ ≈ 𝐴 ∧ ( 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) |
29 |
27 28
|
orbi12i |
⊢ ( ( ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ∨ ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ↔ ( ( ¬ ∅ ≈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ∨ ( ¬ ∅ ≈ 𝐴 ∧ ( 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) ) |
30 |
26 29
|
sylbb2 |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) → ( ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ∨ ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) |
31 |
|
simp2 |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → 𝑛 ∈ ℕ ) |
32 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 1 ... 𝑛 ) = ( 1 ... 0 ) ) |
33 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
34 |
32 33
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 1 ... 𝑛 ) = ∅ ) |
35 |
|
simp2 |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ ( 1 ... 𝑛 ) = ∅ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ( 1 ... 𝑛 ) = ∅ ) |
36 |
|
simp3 |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ ( 1 ... 𝑛 ) = ∅ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ( 1 ... 𝑛 ) ≈ 𝐴 ) |
37 |
35 36
|
eqbrtrrd |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ ( 1 ... 𝑛 ) = ∅ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ∅ ≈ 𝐴 ) |
38 |
|
simp1 |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ ( 1 ... 𝑛 ) = ∅ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ¬ ∅ ≈ 𝐴 ) |
39 |
37 38
|
pm2.21dd |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ ( 1 ... 𝑛 ) = ∅ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → 𝑛 ∈ ℕ ) |
40 |
34 39
|
syl3an2 |
⊢ ( ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → 𝑛 ∈ ℕ ) |
41 |
31 40
|
jaoi |
⊢ ( ( ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ∨ ( ¬ ∅ ≈ 𝐴 ∧ 𝑛 = 0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
42 |
30 41
|
syl |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
43 |
|
simprr |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) → ( 1 ... 𝑛 ) ≈ 𝐴 ) |
44 |
42 43
|
jca |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) → ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
45 |
|
nngt0 |
⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) |
46 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
47 |
46
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ∅ ) = 0 ) |
48 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
49 |
|
hashfz1 |
⊢ ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
50 |
48 49
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
51 |
45 47 50
|
3brtr4d |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ∅ ) < ( ♯ ‘ ( 1 ... 𝑛 ) ) ) |
52 |
|
fzfi |
⊢ ( 1 ... 𝑛 ) ∈ Fin |
53 |
|
hashsdom |
⊢ ( ( ∅ ∈ Fin ∧ ( 1 ... 𝑛 ) ∈ Fin ) → ( ( ♯ ‘ ∅ ) < ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ ∅ ≺ ( 1 ... 𝑛 ) ) ) |
54 |
6 52 53
|
mp2an |
⊢ ( ( ♯ ‘ ∅ ) < ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ ∅ ≺ ( 1 ... 𝑛 ) ) |
55 |
51 54
|
sylib |
⊢ ( 𝑛 ∈ ℕ → ∅ ≺ ( 1 ... 𝑛 ) ) |
56 |
55
|
anim1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ( ∅ ≺ ( 1 ... 𝑛 ) ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
57 |
|
sdomentr |
⊢ ( ( ∅ ≺ ( 1 ... 𝑛 ) ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ∅ ≺ 𝐴 ) |
58 |
|
sdomnen |
⊢ ( ∅ ≺ 𝐴 → ¬ ∅ ≈ 𝐴 ) |
59 |
57 58
|
syl |
⊢ ( ( ∅ ≺ ( 1 ... 𝑛 ) ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ¬ ∅ ≈ 𝐴 ) |
60 |
|
ensymb |
⊢ ( ∅ ≈ 𝐴 ↔ 𝐴 ≈ ∅ ) |
61 |
60 16
|
bitri |
⊢ ( ∅ ≈ 𝐴 ↔ 𝐴 = ∅ ) |
62 |
61
|
notbii |
⊢ ( ¬ ∅ ≈ 𝐴 ↔ ¬ 𝐴 = ∅ ) |
63 |
59 62
|
sylib |
⊢ ( ( ∅ ≺ ( 1 ... 𝑛 ) ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ¬ 𝐴 = ∅ ) |
64 |
56 63
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ¬ 𝐴 = ∅ ) |
65 |
48
|
anim1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
66 |
64 65
|
jca |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) → ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) |
67 |
44 66
|
impbii |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
68 |
67
|
exbii |
⊢ ( ∃ 𝑛 ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ↔ ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
69 |
|
19.42v |
⊢ ( ∃ 𝑛 ( ¬ 𝐴 = ∅ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ↔ ( ¬ 𝐴 = ∅ ∧ ∃ 𝑛 ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ) |
70 |
15 68 69
|
3bitr2ri |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ∃ 𝑛 ( 𝑛 ∈ ℕ0 ∧ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) ↔ ∃ 𝑛 ∈ ℕ ( 1 ... 𝑛 ) ≈ 𝐴 ) |
71 |
14 70
|
bitri |
⊢ ( ( ¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ↔ ∃ 𝑛 ∈ ℕ ( 1 ... 𝑛 ) ≈ 𝐴 ) |
72 |
10 71
|
orbi12i |
⊢ ( ( ( 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ∨ ( ¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin ) ) ↔ ( 𝐴 = ∅ ∨ ∃ 𝑛 ∈ ℕ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |
73 |
4 72
|
bitri |
⊢ ( 𝐴 ∈ Fin ↔ ( 𝐴 = ∅ ∨ ∃ 𝑛 ∈ ℕ ( 1 ... 𝑛 ) ≈ 𝐴 ) ) |