Step |
Hyp |
Ref |
Expression |
1 |
|
exmid |
|- ( A = (/) \/ -. A = (/) ) |
2 |
1
|
biantrur |
|- ( A e. Fin <-> ( ( A = (/) \/ -. A = (/) ) /\ A e. Fin ) ) |
3 |
|
andir |
|- ( ( ( A = (/) \/ -. A = (/) ) /\ A e. Fin ) <-> ( ( A = (/) /\ A e. Fin ) \/ ( -. A = (/) /\ A e. Fin ) ) ) |
4 |
2 3
|
bitri |
|- ( A e. Fin <-> ( ( A = (/) /\ A e. Fin ) \/ ( -. A = (/) /\ A e. Fin ) ) ) |
5 |
|
simpl |
|- ( ( A = (/) /\ A e. Fin ) -> A = (/) ) |
6 |
|
0fin |
|- (/) e. Fin |
7 |
|
eleq1a |
|- ( (/) e. Fin -> ( A = (/) -> A e. Fin ) ) |
8 |
6 7
|
ax-mp |
|- ( A = (/) -> A e. Fin ) |
9 |
8
|
ancli |
|- ( A = (/) -> ( A = (/) /\ A e. Fin ) ) |
10 |
5 9
|
impbii |
|- ( ( A = (/) /\ A e. Fin ) <-> A = (/) ) |
11 |
|
rp-isfinite5 |
|- ( A e. Fin <-> E. n e. NN0 ( 1 ... n ) ~~ A ) |
12 |
|
df-rex |
|- ( E. n e. NN0 ( 1 ... n ) ~~ A <-> E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) |
13 |
11 12
|
bitri |
|- ( A e. Fin <-> E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) |
14 |
13
|
anbi2i |
|- ( ( -. A = (/) /\ A e. Fin ) <-> ( -. A = (/) /\ E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) ) |
15 |
|
df-rex |
|- ( E. n e. NN ( 1 ... n ) ~~ A <-> E. n ( n e. NN /\ ( 1 ... n ) ~~ A ) ) |
16 |
|
en0 |
|- ( A ~~ (/) <-> A = (/) ) |
17 |
|
ensymb |
|- ( A ~~ (/) <-> (/) ~~ A ) |
18 |
16 17
|
bitr3i |
|- ( A = (/) <-> (/) ~~ A ) |
19 |
18
|
notbii |
|- ( -. A = (/) <-> -. (/) ~~ A ) |
20 |
|
elnn0 |
|- ( n e. NN0 <-> ( n e. NN \/ n = 0 ) ) |
21 |
20
|
anbi1i |
|- ( ( n e. NN0 /\ ( 1 ... n ) ~~ A ) <-> ( ( n e. NN \/ n = 0 ) /\ ( 1 ... n ) ~~ A ) ) |
22 |
|
andir |
|- ( ( ( n e. NN \/ n = 0 ) /\ ( 1 ... n ) ~~ A ) <-> ( ( n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) |
23 |
21 22
|
bitri |
|- ( ( n e. NN0 /\ ( 1 ... n ) ~~ A ) <-> ( ( n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) |
24 |
19 23
|
anbi12i |
|- ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> ( -. (/) ~~ A /\ ( ( n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) ) |
25 |
|
andi |
|- ( ( -. (/) ~~ A /\ ( ( n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) <-> ( ( -. (/) ~~ A /\ ( n e. NN /\ ( 1 ... n ) ~~ A ) ) \/ ( -. (/) ~~ A /\ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) ) |
26 |
24 25
|
bitri |
|- ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> ( ( -. (/) ~~ A /\ ( n e. NN /\ ( 1 ... n ) ~~ A ) ) \/ ( -. (/) ~~ A /\ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) ) |
27 |
|
3anass |
|- ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) <-> ( -. (/) ~~ A /\ ( n e. NN /\ ( 1 ... n ) ~~ A ) ) ) |
28 |
|
3anass |
|- ( ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) <-> ( -. (/) ~~ A /\ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) |
29 |
27 28
|
orbi12i |
|- ( ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) ) <-> ( ( -. (/) ~~ A /\ ( n e. NN /\ ( 1 ... n ) ~~ A ) ) \/ ( -. (/) ~~ A /\ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) ) |
30 |
26 29
|
sylbb2 |
|- ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) -> ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) ) ) |
31 |
|
simp2 |
|- ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) -> n e. NN ) |
32 |
|
oveq2 |
|- ( n = 0 -> ( 1 ... n ) = ( 1 ... 0 ) ) |
33 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
34 |
32 33
|
eqtrdi |
|- ( n = 0 -> ( 1 ... n ) = (/) ) |
35 |
|
simp2 |
|- ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> ( 1 ... n ) = (/) ) |
36 |
|
simp3 |
|- ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> ( 1 ... n ) ~~ A ) |
37 |
35 36
|
eqbrtrrd |
|- ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> (/) ~~ A ) |
38 |
|
simp1 |
|- ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> -. (/) ~~ A ) |
39 |
37 38
|
pm2.21dd |
|- ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> n e. NN ) |
40 |
34 39
|
syl3an2 |
|- ( ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) -> n e. NN ) |
41 |
31 40
|
jaoi |
|- ( ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) ) -> n e. NN ) |
42 |
30 41
|
syl |
|- ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) -> n e. NN ) |
43 |
|
simprr |
|- ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) -> ( 1 ... n ) ~~ A ) |
44 |
42 43
|
jca |
|- ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) -> ( n e. NN /\ ( 1 ... n ) ~~ A ) ) |
45 |
|
nngt0 |
|- ( n e. NN -> 0 < n ) |
46 |
|
hash0 |
|- ( # ` (/) ) = 0 |
47 |
46
|
a1i |
|- ( n e. NN -> ( # ` (/) ) = 0 ) |
48 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
49 |
|
hashfz1 |
|- ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) |
50 |
48 49
|
syl |
|- ( n e. NN -> ( # ` ( 1 ... n ) ) = n ) |
51 |
45 47 50
|
3brtr4d |
|- ( n e. NN -> ( # ` (/) ) < ( # ` ( 1 ... n ) ) ) |
52 |
|
fzfi |
|- ( 1 ... n ) e. Fin |
53 |
|
hashsdom |
|- ( ( (/) e. Fin /\ ( 1 ... n ) e. Fin ) -> ( ( # ` (/) ) < ( # ` ( 1 ... n ) ) <-> (/) ~< ( 1 ... n ) ) ) |
54 |
6 52 53
|
mp2an |
|- ( ( # ` (/) ) < ( # ` ( 1 ... n ) ) <-> (/) ~< ( 1 ... n ) ) |
55 |
51 54
|
sylib |
|- ( n e. NN -> (/) ~< ( 1 ... n ) ) |
56 |
55
|
anim1i |
|- ( ( n e. NN /\ ( 1 ... n ) ~~ A ) -> ( (/) ~< ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) ) |
57 |
|
sdomentr |
|- ( ( (/) ~< ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) -> (/) ~< A ) |
58 |
|
sdomnen |
|- ( (/) ~< A -> -. (/) ~~ A ) |
59 |
57 58
|
syl |
|- ( ( (/) ~< ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) -> -. (/) ~~ A ) |
60 |
|
ensymb |
|- ( (/) ~~ A <-> A ~~ (/) ) |
61 |
60 16
|
bitri |
|- ( (/) ~~ A <-> A = (/) ) |
62 |
61
|
notbii |
|- ( -. (/) ~~ A <-> -. A = (/) ) |
63 |
59 62
|
sylib |
|- ( ( (/) ~< ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) -> -. A = (/) ) |
64 |
56 63
|
syl |
|- ( ( n e. NN /\ ( 1 ... n ) ~~ A ) -> -. A = (/) ) |
65 |
48
|
anim1i |
|- ( ( n e. NN /\ ( 1 ... n ) ~~ A ) -> ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) |
66 |
64 65
|
jca |
|- ( ( n e. NN /\ ( 1 ... n ) ~~ A ) -> ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) ) |
67 |
44 66
|
impbii |
|- ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> ( n e. NN /\ ( 1 ... n ) ~~ A ) ) |
68 |
67
|
exbii |
|- ( E. n ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> E. n ( n e. NN /\ ( 1 ... n ) ~~ A ) ) |
69 |
|
19.42v |
|- ( E. n ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> ( -. A = (/) /\ E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) ) |
70 |
15 68 69
|
3bitr2ri |
|- ( ( -. A = (/) /\ E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> E. n e. NN ( 1 ... n ) ~~ A ) |
71 |
14 70
|
bitri |
|- ( ( -. A = (/) /\ A e. Fin ) <-> E. n e. NN ( 1 ... n ) ~~ A ) |
72 |
10 71
|
orbi12i |
|- ( ( ( A = (/) /\ A e. Fin ) \/ ( -. A = (/) /\ A e. Fin ) ) <-> ( A = (/) \/ E. n e. NN ( 1 ... n ) ~~ A ) ) |
73 |
4 72
|
bitri |
|- ( A e. Fin <-> ( A = (/) \/ E. n e. NN ( 1 ... n ) ~~ A ) ) |