| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exmid |  |-  ( A = (/) \/ -. A = (/) ) | 
						
							| 2 | 1 | biantrur |  |-  ( A e. Fin <-> ( ( A = (/) \/ -. A = (/) ) /\ A e. Fin ) ) | 
						
							| 3 |  | andir |  |-  ( ( ( A = (/) \/ -. A = (/) ) /\ A e. Fin ) <-> ( ( A = (/) /\ A e. Fin ) \/ ( -. A = (/) /\ A e. Fin ) ) ) | 
						
							| 4 | 2 3 | bitri |  |-  ( A e. Fin <-> ( ( A = (/) /\ A e. Fin ) \/ ( -. A = (/) /\ A e. Fin ) ) ) | 
						
							| 5 |  | simpl |  |-  ( ( A = (/) /\ A e. Fin ) -> A = (/) ) | 
						
							| 6 |  | 0fi |  |-  (/) e. Fin | 
						
							| 7 |  | eleq1a |  |-  ( (/) e. Fin -> ( A = (/) -> A e. Fin ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( A = (/) -> A e. Fin ) | 
						
							| 9 | 8 | ancli |  |-  ( A = (/) -> ( A = (/) /\ A e. Fin ) ) | 
						
							| 10 | 5 9 | impbii |  |-  ( ( A = (/) /\ A e. Fin ) <-> A = (/) ) | 
						
							| 11 |  | rp-isfinite5 |  |-  ( A e. Fin <-> E. n e. NN0 ( 1 ... n ) ~~ A ) | 
						
							| 12 |  | df-rex |  |-  ( E. n e. NN0 ( 1 ... n ) ~~ A <-> E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 13 | 11 12 | bitri |  |-  ( A e. Fin <-> E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 14 | 13 | anbi2i |  |-  ( ( -. A = (/) /\ A e. Fin ) <-> ( -. A = (/) /\ E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) ) | 
						
							| 15 |  | df-rex |  |-  ( E. n e. NN ( 1 ... n ) ~~ A <-> E. n ( n e. NN /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 16 |  | en0 |  |-  ( A ~~ (/) <-> A = (/) ) | 
						
							| 17 |  | ensymb |  |-  ( A ~~ (/) <-> (/) ~~ A ) | 
						
							| 18 | 16 17 | bitr3i |  |-  ( A = (/) <-> (/) ~~ A ) | 
						
							| 19 | 18 | notbii |  |-  ( -. A = (/) <-> -. (/) ~~ A ) | 
						
							| 20 |  | elnn0 |  |-  ( n e. NN0 <-> ( n e. NN \/ n = 0 ) ) | 
						
							| 21 | 20 | anbi1i |  |-  ( ( n e. NN0 /\ ( 1 ... n ) ~~ A ) <-> ( ( n e. NN \/ n = 0 ) /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 22 |  | andir |  |-  ( ( ( n e. NN \/ n = 0 ) /\ ( 1 ... n ) ~~ A ) <-> ( ( n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) | 
						
							| 23 | 21 22 | bitri |  |-  ( ( n e. NN0 /\ ( 1 ... n ) ~~ A ) <-> ( ( n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) | 
						
							| 24 | 19 23 | anbi12i |  |-  ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> ( -. (/) ~~ A /\ ( ( n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) ) | 
						
							| 25 |  | andi |  |-  ( ( -. (/) ~~ A /\ ( ( n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) <-> ( ( -. (/) ~~ A /\ ( n e. NN /\ ( 1 ... n ) ~~ A ) ) \/ ( -. (/) ~~ A /\ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) ) | 
						
							| 26 | 24 25 | bitri |  |-  ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> ( ( -. (/) ~~ A /\ ( n e. NN /\ ( 1 ... n ) ~~ A ) ) \/ ( -. (/) ~~ A /\ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) ) | 
						
							| 27 |  | 3anass |  |-  ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) <-> ( -. (/) ~~ A /\ ( n e. NN /\ ( 1 ... n ) ~~ A ) ) ) | 
						
							| 28 |  | 3anass |  |-  ( ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) <-> ( -. (/) ~~ A /\ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) | 
						
							| 29 | 27 28 | orbi12i |  |-  ( ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) ) <-> ( ( -. (/) ~~ A /\ ( n e. NN /\ ( 1 ... n ) ~~ A ) ) \/ ( -. (/) ~~ A /\ ( n = 0 /\ ( 1 ... n ) ~~ A ) ) ) ) | 
						
							| 30 | 26 29 | sylbb2 |  |-  ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) -> ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) ) ) | 
						
							| 31 |  | simp2 |  |-  ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) -> n e. NN ) | 
						
							| 32 |  | oveq2 |  |-  ( n = 0 -> ( 1 ... n ) = ( 1 ... 0 ) ) | 
						
							| 33 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 34 | 32 33 | eqtrdi |  |-  ( n = 0 -> ( 1 ... n ) = (/) ) | 
						
							| 35 |  | simp2 |  |-  ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> ( 1 ... n ) = (/) ) | 
						
							| 36 |  | simp3 |  |-  ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> ( 1 ... n ) ~~ A ) | 
						
							| 37 | 35 36 | eqbrtrrd |  |-  ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> (/) ~~ A ) | 
						
							| 38 |  | simp1 |  |-  ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> -. (/) ~~ A ) | 
						
							| 39 | 37 38 | pm2.21dd |  |-  ( ( -. (/) ~~ A /\ ( 1 ... n ) = (/) /\ ( 1 ... n ) ~~ A ) -> n e. NN ) | 
						
							| 40 | 34 39 | syl3an2 |  |-  ( ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) -> n e. NN ) | 
						
							| 41 | 31 40 | jaoi |  |-  ( ( ( -. (/) ~~ A /\ n e. NN /\ ( 1 ... n ) ~~ A ) \/ ( -. (/) ~~ A /\ n = 0 /\ ( 1 ... n ) ~~ A ) ) -> n e. NN ) | 
						
							| 42 | 30 41 | syl |  |-  ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) -> n e. NN ) | 
						
							| 43 |  | simprr |  |-  ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) -> ( 1 ... n ) ~~ A ) | 
						
							| 44 | 42 43 | jca |  |-  ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) -> ( n e. NN /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 45 |  | nngt0 |  |-  ( n e. NN -> 0 < n ) | 
						
							| 46 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 47 | 46 | a1i |  |-  ( n e. NN -> ( # ` (/) ) = 0 ) | 
						
							| 48 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 49 |  | hashfz1 |  |-  ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) | 
						
							| 50 | 48 49 | syl |  |-  ( n e. NN -> ( # ` ( 1 ... n ) ) = n ) | 
						
							| 51 | 45 47 50 | 3brtr4d |  |-  ( n e. NN -> ( # ` (/) ) < ( # ` ( 1 ... n ) ) ) | 
						
							| 52 |  | fzfi |  |-  ( 1 ... n ) e. Fin | 
						
							| 53 |  | hashsdom |  |-  ( ( (/) e. Fin /\ ( 1 ... n ) e. Fin ) -> ( ( # ` (/) ) < ( # ` ( 1 ... n ) ) <-> (/) ~< ( 1 ... n ) ) ) | 
						
							| 54 | 6 52 53 | mp2an |  |-  ( ( # ` (/) ) < ( # ` ( 1 ... n ) ) <-> (/) ~< ( 1 ... n ) ) | 
						
							| 55 | 51 54 | sylib |  |-  ( n e. NN -> (/) ~< ( 1 ... n ) ) | 
						
							| 56 | 55 | anim1i |  |-  ( ( n e. NN /\ ( 1 ... n ) ~~ A ) -> ( (/) ~< ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 57 |  | sdomentr |  |-  ( ( (/) ~< ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) -> (/) ~< A ) | 
						
							| 58 |  | sdomnen |  |-  ( (/) ~< A -> -. (/) ~~ A ) | 
						
							| 59 | 57 58 | syl |  |-  ( ( (/) ~< ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) -> -. (/) ~~ A ) | 
						
							| 60 |  | en0r |  |-  ( (/) ~~ A <-> A = (/) ) | 
						
							| 61 | 60 | notbii |  |-  ( -. (/) ~~ A <-> -. A = (/) ) | 
						
							| 62 | 59 61 | sylib |  |-  ( ( (/) ~< ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) -> -. A = (/) ) | 
						
							| 63 | 56 62 | syl |  |-  ( ( n e. NN /\ ( 1 ... n ) ~~ A ) -> -. A = (/) ) | 
						
							| 64 | 48 | anim1i |  |-  ( ( n e. NN /\ ( 1 ... n ) ~~ A ) -> ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 65 | 63 64 | jca |  |-  ( ( n e. NN /\ ( 1 ... n ) ~~ A ) -> ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) ) | 
						
							| 66 | 44 65 | impbii |  |-  ( ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> ( n e. NN /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 67 | 66 | exbii |  |-  ( E. n ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> E. n ( n e. NN /\ ( 1 ... n ) ~~ A ) ) | 
						
							| 68 |  | 19.42v |  |-  ( E. n ( -. A = (/) /\ ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> ( -. A = (/) /\ E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) ) | 
						
							| 69 | 15 67 68 | 3bitr2ri |  |-  ( ( -. A = (/) /\ E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) <-> E. n e. NN ( 1 ... n ) ~~ A ) | 
						
							| 70 | 14 69 | bitri |  |-  ( ( -. A = (/) /\ A e. Fin ) <-> E. n e. NN ( 1 ... n ) ~~ A ) | 
						
							| 71 | 10 70 | orbi12i |  |-  ( ( ( A = (/) /\ A e. Fin ) \/ ( -. A = (/) /\ A e. Fin ) ) <-> ( A = (/) \/ E. n e. NN ( 1 ... n ) ~~ A ) ) | 
						
							| 72 | 4 71 | bitri |  |-  ( A e. Fin <-> ( A = (/) \/ E. n e. NN ( 1 ... n ) ~~ A ) ) |