Step |
Hyp |
Ref |
Expression |
1 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
2 |
|
isfinite4 |
|- ( A e. Fin <-> ( 1 ... ( # ` A ) ) ~~ A ) |
3 |
2
|
biimpi |
|- ( A e. Fin -> ( 1 ... ( # ` A ) ) ~~ A ) |
4 |
1 3
|
jca |
|- ( A e. Fin -> ( ( # ` A ) e. NN0 /\ ( 1 ... ( # ` A ) ) ~~ A ) ) |
5 |
|
eleq1 |
|- ( n = ( # ` A ) -> ( n e. NN0 <-> ( # ` A ) e. NN0 ) ) |
6 |
|
oveq2 |
|- ( n = ( # ` A ) -> ( 1 ... n ) = ( 1 ... ( # ` A ) ) ) |
7 |
6
|
breq1d |
|- ( n = ( # ` A ) -> ( ( 1 ... n ) ~~ A <-> ( 1 ... ( # ` A ) ) ~~ A ) ) |
8 |
5 7
|
anbi12d |
|- ( n = ( # ` A ) -> ( ( n e. NN0 /\ ( 1 ... n ) ~~ A ) <-> ( ( # ` A ) e. NN0 /\ ( 1 ... ( # ` A ) ) ~~ A ) ) ) |
9 |
1 4 8
|
spcedv |
|- ( A e. Fin -> E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) |
10 |
|
df-rex |
|- ( E. n e. NN0 ( 1 ... n ) ~~ A <-> E. n ( n e. NN0 /\ ( 1 ... n ) ~~ A ) ) |
11 |
9 10
|
sylibr |
|- ( A e. Fin -> E. n e. NN0 ( 1 ... n ) ~~ A ) |
12 |
|
hasheni |
|- ( ( 1 ... n ) ~~ A -> ( # ` ( 1 ... n ) ) = ( # ` A ) ) |
13 |
12
|
eqcomd |
|- ( ( 1 ... n ) ~~ A -> ( # ` A ) = ( # ` ( 1 ... n ) ) ) |
14 |
|
hashfz1 |
|- ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) |
15 |
|
ovex |
|- ( 1 ... ( # ` A ) ) e. _V |
16 |
|
eqtr |
|- ( ( ( # ` A ) = ( # ` ( 1 ... n ) ) /\ ( # ` ( 1 ... n ) ) = n ) -> ( # ` A ) = n ) |
17 |
|
oveq2 |
|- ( ( # ` A ) = n -> ( 1 ... ( # ` A ) ) = ( 1 ... n ) ) |
18 |
|
eqeng |
|- ( ( 1 ... ( # ` A ) ) e. _V -> ( ( 1 ... ( # ` A ) ) = ( 1 ... n ) -> ( 1 ... ( # ` A ) ) ~~ ( 1 ... n ) ) ) |
19 |
17 18
|
syl5 |
|- ( ( 1 ... ( # ` A ) ) e. _V -> ( ( # ` A ) = n -> ( 1 ... ( # ` A ) ) ~~ ( 1 ... n ) ) ) |
20 |
15 16 19
|
mpsyl |
|- ( ( ( # ` A ) = ( # ` ( 1 ... n ) ) /\ ( # ` ( 1 ... n ) ) = n ) -> ( 1 ... ( # ` A ) ) ~~ ( 1 ... n ) ) |
21 |
13 14 20
|
syl2anr |
|- ( ( n e. NN0 /\ ( 1 ... n ) ~~ A ) -> ( 1 ... ( # ` A ) ) ~~ ( 1 ... n ) ) |
22 |
|
entr |
|- ( ( ( 1 ... ( # ` A ) ) ~~ ( 1 ... n ) /\ ( 1 ... n ) ~~ A ) -> ( 1 ... ( # ` A ) ) ~~ A ) |
23 |
21 22
|
sylancom |
|- ( ( n e. NN0 /\ ( 1 ... n ) ~~ A ) -> ( 1 ... ( # ` A ) ) ~~ A ) |
24 |
23 2
|
sylibr |
|- ( ( n e. NN0 /\ ( 1 ... n ) ~~ A ) -> A e. Fin ) |
25 |
24
|
rexlimiva |
|- ( E. n e. NN0 ( 1 ... n ) ~~ A -> A e. Fin ) |
26 |
11 25
|
impbii |
|- ( A e. Fin <-> E. n e. NN0 ( 1 ... n ) ~~ A ) |