Metamath Proof Explorer


Theorem satf0n0

Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023)

Ref Expression
Assertion satf0n0 ( 𝑁 ∈ ω → ∅ ∉ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = ∅ → ( ( ∅ Sat ∅ ) ‘ 𝑥 ) = ( ( ∅ Sat ∅ ) ‘ ∅ ) )
2 1 eleq2d ( 𝑥 = ∅ → ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ↔ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ ∅ ) ) )
3 2 notbid ( 𝑥 = ∅ → ( ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ ∅ ) ) )
4 fveq2 ( 𝑥 = 𝑦 → ( ( ∅ Sat ∅ ) ‘ 𝑥 ) = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) )
5 4 eleq2d ( 𝑥 = 𝑦 → ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ↔ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) )
6 5 notbid ( 𝑥 = 𝑦 → ( ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) )
7 fveq2 ( 𝑥 = suc 𝑦 → ( ( ∅ Sat ∅ ) ‘ 𝑥 ) = ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) )
8 7 eleq2d ( 𝑥 = suc 𝑦 → ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ↔ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ) )
9 8 notbid ( 𝑥 = suc 𝑦 → ( ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ) )
10 fveq2 ( 𝑥 = 𝑁 → ( ( ∅ Sat ∅ ) ‘ 𝑥 ) = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
11 10 eleq2d ( 𝑥 = 𝑁 → ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ↔ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) )
12 11 notbid ( 𝑥 = 𝑁 → ( ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) )
13 0nelopab ¬ ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) }
14 satf00 ( ( ∅ Sat ∅ ) ‘ ∅ ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) }
15 14 eleq2i ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ ∅ ) ↔ ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } )
16 13 15 mtbir ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ ∅ )
17 simpr ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) → ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) )
18 0nelopab ¬ ∅ ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) }
19 ioran ( ¬ ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∨ ∅ ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ↔ ( ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∧ ¬ ∅ ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
20 17 18 19 sylanblrc ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) → ¬ ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∨ ∅ ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
21 eqid ( ∅ Sat ∅ ) = ( ∅ Sat ∅ )
22 21 satf0suc ( 𝑦 ∈ ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
23 22 adantr ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) → ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
24 23 eleq2d ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) → ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ↔ ∅ ∈ ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) )
25 elun ( ∅ ∈ ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ↔ ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∨ ∅ ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
26 24 25 bitrdi ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) → ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ↔ ( ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∨ ∅ ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) )
27 20 26 mtbird ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) → ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) )
28 27 ex ( 𝑦 ∈ ω → ( ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ) )
29 3 6 9 12 16 28 finds ( 𝑁 ∈ ω → ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
30 df-nel ( ∅ ∉ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ↔ ¬ ∅ ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
31 29 30 sylibr ( 𝑁 ∈ ω → ∅ ∉ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )