Step |
Hyp |
Ref |
Expression |
1 |
|
peano1 |
⊢ ∅ ∈ ω |
2 |
|
elelsuc |
⊢ ( ∅ ∈ ω → ∅ ∈ suc ω ) |
3 |
|
satf0sucom |
⊢ ( ∅ ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ∅ ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( ( ∅ Sat ∅ ) ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ∅ ) |
5 |
|
omex |
⊢ ω ∈ V |
6 |
5 5
|
xpex |
⊢ ( ω × ω ) ∈ V |
7 |
|
xpexg |
⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → ( ω × ( ω × ω ) ) ∈ V ) |
8 |
|
simpl |
⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → ω ∈ V ) |
9 |
|
goelel3xp |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖 ∈𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) |
10 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 ∈ ( ω × ( ω × ω ) ) ↔ ( 𝑖 ∈𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) ) |
11 |
9 10
|
syl5ibrcom |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
12 |
11
|
rexlimivv |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) |
13 |
12
|
ad2antll |
⊢ ( ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) |
14 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ ω ↔ ∅ ∈ ω ) ) |
15 |
1 14
|
mpbiri |
⊢ ( 𝑦 = ∅ → 𝑦 ∈ ω ) |
16 |
15
|
ad2antrl |
⊢ ( ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → 𝑦 ∈ ω ) |
17 |
7 8 13 16
|
opabex2 |
⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ∈ V ) |
18 |
5 6 17
|
mp2an |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ∈ V |
19 |
18
|
rdg0 |
⊢ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } |
20 |
4 19
|
eqtri |
⊢ ( ( ∅ Sat ∅ ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } |