Step |
Hyp |
Ref |
Expression |
1 |
|
peano1 |
⊢ ∅ ∈ ω |
2 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ ω ↔ ∅ ∈ ω ) ) |
3 |
1 2
|
mpbiri |
⊢ ( 𝑦 = ∅ → 𝑦 ∈ ω ) |
4 |
3
|
adantr |
⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) → 𝑦 ∈ ω ) |
5 |
4
|
pm4.71ri |
⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ↔ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) ) |
6 |
5
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) } |
7 |
|
omex |
⊢ ω ∈ V |
8 |
7
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ω ∈ V ) |
9 |
|
simp1 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝑋 ∈ 𝑈 ) |
10 |
|
unab |
⊢ ( { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ) = { 𝑥 ∣ ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } |
11 |
|
abrexexg |
⊢ ( 𝑌 ∈ 𝑉 → { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∈ V ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∈ V ) |
13 |
|
abrexexg |
⊢ ( 𝑍 ∈ 𝑊 → { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ∈ V ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ∈ V ) |
15 |
|
unexg |
⊢ ( ( { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∈ V ∧ { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ∈ V ) → ( { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ) ∈ V ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ) ∈ V ) |
17 |
10 16
|
eqeltrrid |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
18 |
17
|
ralrimivw |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ∀ 𝑢 ∈ 𝑋 { 𝑥 ∣ ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
19 |
|
abrexex2g |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ ∀ 𝑢 ∈ 𝑋 { 𝑥 ∣ ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) → { 𝑥 ∣ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
20 |
9 18 19
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑦 ∈ ω ) → { 𝑥 ∣ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
22 |
8 21
|
opabex3rd |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } ∈ V ) |
23 |
|
simpr |
⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) → ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) |
24 |
23
|
anim2i |
⊢ ( ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) → ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) |
25 |
24
|
ssopab2i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } |
26 |
25
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } ) |
27 |
22 26
|
ssexd |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) } ∈ V ) |
28 |
6 27
|
eqeltrid |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } ∈ V ) |