Metamath Proof Explorer


Theorem sat1el2xp

Description: The first component of an element of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation is a member of a doubled Cartesian product. (Contributed by AV, 17-Sep-2023)

Ref Expression
Assertion sat1el2xp ( 𝑁 ∈ ω → ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = ∅ → ( ( ∅ Sat ∅ ) ‘ 𝑥 ) = ( ( ∅ Sat ∅ ) ‘ ∅ ) )
2 1 raleqdv ( 𝑥 = ∅ → ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ ∅ ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
3 fveq2 ( 𝑥 = 𝑦 → ( ( ∅ Sat ∅ ) ‘ 𝑥 ) = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) )
4 3 raleqdv ( 𝑥 = 𝑦 → ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
5 fveq2 ( 𝑥 = suc 𝑦 → ( ( ∅ Sat ∅ ) ‘ 𝑥 ) = ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) )
6 5 raleqdv ( 𝑥 = suc 𝑦 → ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
7 fveq2 ( 𝑥 = 𝑁 → ( ( ∅ Sat ∅ ) ‘ 𝑥 ) = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
8 7 raleqdv ( 𝑥 = 𝑁 → ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑥 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
9 eqeq1 ( 𝑥 = ( 1st𝑤 ) → ( 𝑥 = ( 𝑖𝑔 𝑗 ) ↔ ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) ) )
10 9 2rexbidv ( 𝑥 = ( 1st𝑤 ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) ) )
11 10 anbi2d ( 𝑥 = ( 1st𝑤 ) → ( ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) ↔ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) ) ) )
12 eqeq1 ( 𝑧 = ( 2nd𝑤 ) → ( 𝑧 = ∅ ↔ ( 2nd𝑤 ) = ∅ ) )
13 12 anbi1d ( 𝑧 = ( 2nd𝑤 ) → ( ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) ) ↔ ( ( 2nd𝑤 ) = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) ) ) )
14 11 13 elopabi ( 𝑤 ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } → ( ( 2nd𝑤 ) = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) ) )
15 goel ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖𝑔 𝑗 ) = ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ )
16 15 eqeq2d ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) ↔ ( 1st𝑤 ) = ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ) )
17 omex ω ∈ V
18 17 17 pm3.2i ( ω ∈ V ∧ ω ∈ V )
19 peano1 ∅ ∈ ω
20 19 a1i ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ∅ ∈ ω )
21 opelxpi ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ω × ω ) )
22 20 21 opelxpd ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ∈ ( ω × ( ω × ω ) ) )
23 xpeq12 ( ( 𝑎 = ω ∧ 𝑏 = ω ) → ( 𝑎 × 𝑏 ) = ( ω × ω ) )
24 23 xpeq2d ( ( 𝑎 = ω ∧ 𝑏 = ω ) → ( ω × ( 𝑎 × 𝑏 ) ) = ( ω × ( ω × ω ) ) )
25 24 eleq2d ( ( 𝑎 = ω ∧ 𝑏 = ω ) → ( ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ∈ ( ω × ( ω × ω ) ) ) )
26 25 spc2egv ( ( ω ∈ V ∧ ω ∈ V ) → ( ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ∈ ( ω × ( ω × ω ) ) → ∃ 𝑎𝑏 ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
27 18 22 26 mpsyl ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ∃ 𝑎𝑏 ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
28 eleq1 ( ( 1st𝑤 ) = ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ → ( ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
29 28 2exbidv ( ( 1st𝑤 ) = ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ → ( ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∃ 𝑎𝑏 ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
30 27 29 syl5ibrcom ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 1st𝑤 ) = ⟨ ∅ , ⟨ 𝑖 , 𝑗 ⟩ ⟩ → ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
31 16 30 sylbid ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) → ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
32 31 rexlimivv ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) → ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
33 32 adantl ( ( ( 2nd𝑤 ) = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 1st𝑤 ) = ( 𝑖𝑔 𝑗 ) ) → ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
34 14 33 syl ( 𝑤 ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } → ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
35 satf00 ( ( ∅ Sat ∅ ) ‘ ∅ ) = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) }
36 34 35 eleq2s ( 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ ∅ ) → ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
37 36 rgen 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ ∅ ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) )
38 omsucelsucb ( 𝑦 ∈ ω ↔ suc 𝑦 ∈ suc ω )
39 satf0sucom ( suc 𝑦 ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑦 ) )
40 38 39 sylbi ( 𝑦 ∈ ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑦 ) )
41 40 adantr ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑦 ) )
42 nnon ( 𝑦 ∈ ω → 𝑦 ∈ On )
43 rdgsuc ( 𝑦 ∈ On → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑦 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑦 ) ) )
44 42 43 syl ( 𝑦 ∈ ω → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑦 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑦 ) ) )
45 44 adantr ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑦 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑦 ) ) )
46 elelsuc ( 𝑦 ∈ ω → 𝑦 ∈ suc ω )
47 satf0sucom ( 𝑦 ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ 𝑦 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑦 ) )
48 46 47 syl ( 𝑦 ∈ ω → ( ( ∅ Sat ∅ ) ‘ 𝑦 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑦 ) )
49 48 eqcomd ( 𝑦 ∈ ω → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑦 ) = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) )
50 49 fveq2d ( 𝑦 ∈ ω → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑦 ) ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) )
51 50 adantr ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑦 ) ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) )
52 eqidd ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) = ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) )
53 id ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) )
54 rexeq ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ↔ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
55 54 orbi1d ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
56 55 rexeqbi1dv ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
57 56 anbi2d ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ↔ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) )
58 57 opabbidv ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } )
59 53 58 uneq12d ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
60 59 adantl ( ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ∧ 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) → ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
61 fvexd ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∈ V )
62 17 a1i ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ω ∈ V )
63 satf0suclem ( ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∈ V ∧ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∈ V ∧ ω ∈ V ) → { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ∈ V )
64 61 61 62 63 syl3anc ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ∈ V )
65 unexg ( ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∈ V ∧ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ∈ V ) → ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ∈ V )
66 61 64 65 syl2anc ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ∈ V )
67 52 60 61 66 fvmptd ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
68 45 51 67 3eqtrd ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑦 ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
69 41 68 eqtrd ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
70 69 eleq2d ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ↔ 𝑡 ∈ ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) )
71 elun ( 𝑡 ∈ ( ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∪ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ↔ ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∨ 𝑡 ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
72 70 71 bitrdi ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ↔ ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∨ 𝑡 ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) )
73 fveq2 ( 𝑤 = 𝑡 → ( 1st𝑤 ) = ( 1st𝑡 ) )
74 73 eleq1d ( 𝑤 = 𝑡 → ( ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
75 74 2exbidv ( 𝑤 = 𝑡 → ( ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
76 75 rspccv ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
77 76 adantl ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
78 fveq2 ( 𝑤 = 𝑣 → ( 1st𝑤 ) = ( 1st𝑣 ) )
79 78 eleq1d ( 𝑤 = 𝑣 → ( ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ( 1st𝑣 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
80 79 2exbidv ( 𝑤 = 𝑣 → ( ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∃ 𝑎𝑏 ( 1st𝑣 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
81 80 rspcva ( ( 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑣 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
82 sels ( ( 1st𝑣 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 )
83 82 exlimivv ( ∃ 𝑎𝑏 ( 1st𝑣 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 )
84 81 83 syl ( ( 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 )
85 84 expcom ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ( 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 ) )
86 fveq2 ( 𝑤 = 𝑢 → ( 1st𝑤 ) = ( 1st𝑢 ) )
87 86 eleq1d ( 𝑤 = 𝑢 → ( ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ( 1st𝑢 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
88 87 2exbidv ( 𝑤 = 𝑢 → ( ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∃ 𝑎𝑏 ( 1st𝑢 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
89 88 rspcva ( ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑢 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
90 sels ( ( 1st𝑢 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ∃ 𝑠 ( 1st𝑢 ) ∈ 𝑠 )
91 90 exlimivv ( ∃ 𝑎𝑏 ( 1st𝑢 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ∃ 𝑠 ( 1st𝑢 ) ∈ 𝑠 )
92 89 91 syl ( ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑠 ( 1st𝑢 ) ∈ 𝑠 )
93 eleq2w ( 𝑠 = 𝑟 → ( ( 1st𝑢 ) ∈ 𝑠 ↔ ( 1st𝑢 ) ∈ 𝑟 ) )
94 93 cbvexvw ( ∃ 𝑠 ( 1st𝑢 ) ∈ 𝑠 ↔ ∃ 𝑟 ( 1st𝑢 ) ∈ 𝑟 )
95 vex 𝑟 ∈ V
96 vex 𝑠 ∈ V
97 95 96 pm3.2i ( 𝑟 ∈ V ∧ 𝑠 ∈ V )
98 df-ov ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) = ( ⊼𝑔 ‘ ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ )
99 df-gona 𝑔 = ( 𝑒 ∈ ( V × V ) ↦ ⟨ 1o , 𝑒 ⟩ )
100 opeq2 ( 𝑒 = ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ → ⟨ 1o , 𝑒 ⟩ = ⟨ 1o , ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ⟩ )
101 opelvvg ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ∈ ( V × V ) )
102 opex ⟨ 1o , ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ⟩ ∈ V
103 102 a1i ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ⟨ 1o , ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ⟩ ∈ V )
104 99 100 101 103 fvmptd3 ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ( ⊼𝑔 ‘ ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ) = ⟨ 1o , ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ⟩ )
105 98 104 syl5eq ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) = ⟨ 1o , ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ⟩ )
106 1onn 1o ∈ ω
107 106 a1i ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → 1o ∈ ω )
108 opelxpi ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ∈ ( 𝑟 × 𝑠 ) )
109 107 108 opelxpd ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ⟨ 1o , ⟨ ( 1st𝑢 ) , ( 1st𝑣 ) ⟩ ⟩ ∈ ( ω × ( 𝑟 × 𝑠 ) ) )
110 105 109 eqeltrd ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∈ ( ω × ( 𝑟 × 𝑠 ) ) )
111 xpeq12 ( ( 𝑎 = 𝑟𝑏 = 𝑠 ) → ( 𝑎 × 𝑏 ) = ( 𝑟 × 𝑠 ) )
112 111 xpeq2d ( ( 𝑎 = 𝑟𝑏 = 𝑠 ) → ( ω × ( 𝑎 × 𝑏 ) ) = ( ω × ( 𝑟 × 𝑠 ) ) )
113 112 eleq2d ( ( 𝑎 = 𝑟𝑏 = 𝑠 ) → ( ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∈ ( ω × ( 𝑟 × 𝑠 ) ) ) )
114 113 spc2egv ( ( 𝑟 ∈ V ∧ 𝑠 ∈ V ) → ( ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∈ ( ω × ( 𝑟 × 𝑠 ) ) → ∃ 𝑎𝑏 ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
115 97 110 114 mpsyl ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ∃ 𝑎𝑏 ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
116 eleq1 ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
117 116 2exbidv ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∃ 𝑎𝑏 ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
118 115 117 syl5ibrcom ( ( ( 1st𝑢 ) ∈ 𝑟 ∧ ( 1st𝑣 ) ∈ 𝑠 ) → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
119 118 ex ( ( 1st𝑢 ) ∈ 𝑟 → ( ( 1st𝑣 ) ∈ 𝑠 → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
120 119 exlimdv ( ( 1st𝑢 ) ∈ 𝑟 → ( ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
121 120 com23 ( ( 1st𝑢 ) ∈ 𝑟 → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
122 121 exlimiv ( ∃ 𝑟 ( 1st𝑢 ) ∈ 𝑟 → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
123 94 122 sylbi ( ∃ 𝑠 ( 1st𝑢 ) ∈ 𝑠 → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
124 92 123 syl ( ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
125 124 expcom ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
126 125 com24 ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ( ∃ 𝑠 ( 1st𝑣 ) ∈ 𝑠 → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
127 85 126 syld ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ( 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
128 127 adantl ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
129 128 com14 ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
130 129 rexlimdv ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
131 17 96 pm3.2i ( ω ∈ V ∧ 𝑠 ∈ V )
132 df-goal 𝑔 𝑖 ( 1st𝑢 ) = ⟨ 2o , ⟨ 𝑖 , ( 1st𝑢 ) ⟩ ⟩
133 2onn 2o ∈ ω
134 133 a1i ( ( ( 1st𝑢 ) ∈ 𝑠𝑖 ∈ ω ) → 2o ∈ ω )
135 opelxpi ( ( 𝑖 ∈ ω ∧ ( 1st𝑢 ) ∈ 𝑠 ) → ⟨ 𝑖 , ( 1st𝑢 ) ⟩ ∈ ( ω × 𝑠 ) )
136 135 ancoms ( ( ( 1st𝑢 ) ∈ 𝑠𝑖 ∈ ω ) → ⟨ 𝑖 , ( 1st𝑢 ) ⟩ ∈ ( ω × 𝑠 ) )
137 134 136 opelxpd ( ( ( 1st𝑢 ) ∈ 𝑠𝑖 ∈ ω ) → ⟨ 2o , ⟨ 𝑖 , ( 1st𝑢 ) ⟩ ⟩ ∈ ( ω × ( ω × 𝑠 ) ) )
138 132 137 eqeltrid ( ( ( 1st𝑢 ) ∈ 𝑠𝑖 ∈ ω ) → ∀𝑔 𝑖 ( 1st𝑢 ) ∈ ( ω × ( ω × 𝑠 ) ) )
139 138 3adant3 ( ( ( 1st𝑢 ) ∈ 𝑠𝑖 ∈ ω ∧ ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∀𝑔 𝑖 ( 1st𝑢 ) ∈ ( ω × ( ω × 𝑠 ) ) )
140 eleq1 ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( ( 1st𝑡 ) ∈ ( ω × ( ω × 𝑠 ) ) ↔ ∀𝑔 𝑖 ( 1st𝑢 ) ∈ ( ω × ( ω × 𝑠 ) ) ) )
141 140 3ad2ant3 ( ( ( 1st𝑢 ) ∈ 𝑠𝑖 ∈ ω ∧ ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ( ( 1st𝑡 ) ∈ ( ω × ( ω × 𝑠 ) ) ↔ ∀𝑔 𝑖 ( 1st𝑢 ) ∈ ( ω × ( ω × 𝑠 ) ) ) )
142 139 141 mpbird ( ( ( 1st𝑢 ) ∈ 𝑠𝑖 ∈ ω ∧ ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ( 1st𝑡 ) ∈ ( ω × ( ω × 𝑠 ) ) )
143 xpeq12 ( ( 𝑎 = ω ∧ 𝑏 = 𝑠 ) → ( 𝑎 × 𝑏 ) = ( ω × 𝑠 ) )
144 143 xpeq2d ( ( 𝑎 = ω ∧ 𝑏 = 𝑠 ) → ( ω × ( 𝑎 × 𝑏 ) ) = ( ω × ( ω × 𝑠 ) ) )
145 144 eleq2d ( ( 𝑎 = ω ∧ 𝑏 = 𝑠 ) → ( ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ( 1st𝑡 ) ∈ ( ω × ( ω × 𝑠 ) ) ) )
146 145 spc2egv ( ( ω ∈ V ∧ 𝑠 ∈ V ) → ( ( 1st𝑡 ) ∈ ( ω × ( ω × 𝑠 ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
147 131 142 146 mpsyl ( ( ( 1st𝑢 ) ∈ 𝑠𝑖 ∈ ω ∧ ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
148 147 3exp ( ( 1st𝑢 ) ∈ 𝑠 → ( 𝑖 ∈ ω → ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
149 148 com23 ( ( 1st𝑢 ) ∈ 𝑠 → ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( 𝑖 ∈ ω → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
150 149 a1d ( ( 1st𝑢 ) ∈ 𝑠 → ( 𝑦 ∈ ω → ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( 𝑖 ∈ ω → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
151 150 exlimiv ( ∃ 𝑠 ( 1st𝑢 ) ∈ 𝑠 → ( 𝑦 ∈ ω → ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( 𝑖 ∈ ω → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
152 92 151 syl ( ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( 𝑦 ∈ ω → ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( 𝑖 ∈ ω → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
153 152 ex ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ( 𝑦 ∈ ω → ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( 𝑖 ∈ ω → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) ) )
154 153 impcomd ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( 𝑖 ∈ ω → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
155 154 com24 ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( 𝑖 ∈ ω → ( ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) ) )
156 155 rexlimdv ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
157 130 156 jaod ( 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) → ( ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
158 157 rexlimiv ( ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
159 158 adantl ( ( ( 2nd𝑡 ) = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
160 eqeq1 ( 𝑥 = ( 1st𝑡 ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ↔ ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
161 160 rexbidv ( 𝑥 = ( 1st𝑡 ) → ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ↔ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
162 eqeq1 ( 𝑥 = ( 1st𝑡 ) → ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ↔ ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) )
163 162 rexbidv ( 𝑥 = ( 1st𝑡 ) → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ↔ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) )
164 161 163 orbi12d ( 𝑥 = ( 1st𝑡 ) → ( ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
165 164 rexbidv ( 𝑥 = ( 1st𝑡 ) → ( ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
166 165 anbi2d ( 𝑥 = ( 1st𝑡 ) → ( ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ↔ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) )
167 eqeq1 ( 𝑧 = ( 2nd𝑡 ) → ( 𝑧 = ∅ ↔ ( 2nd𝑡 ) = ∅ ) )
168 167 anbi1d ( 𝑧 = ( 2nd𝑡 ) → ( ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ↔ ( ( 2nd𝑡 ) = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) )
169 166 168 elopabi ( 𝑡 ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } → ( ( 2nd𝑡 ) = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( 1st𝑡 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω ( 1st𝑡 ) = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
170 159 169 syl11 ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( 𝑡 ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
171 77 170 jaod ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∨ 𝑡 ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑧 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
172 72 171 sylbid ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) → ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
173 172 ex ( 𝑦 ∈ ω → ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ( 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) → ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) ) )
174 173 ralrimdv ( 𝑦 ∈ ω → ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ∀ 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
175 75 cbvralvw ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ↔ ∀ 𝑡 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑡 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )
176 174 175 syl6ibr ( 𝑦 ∈ ω → ( ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) → ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ suc 𝑦 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) ) )
177 2 4 6 8 37 176 finds ( 𝑁 ∈ ω → ∀ 𝑤 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∃ 𝑎𝑏 ( 1st𝑤 ) ∈ ( ω × ( 𝑎 × 𝑏 ) ) )