| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( x = (/) -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` (/) ) ) |
| 2 |
1
|
raleqdv |
|- ( x = (/) -> ( A. w e. ( ( (/) Sat (/) ) ` x ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. w e. ( ( (/) Sat (/) ) ` (/) ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 3 |
|
fveq2 |
|- ( x = y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` y ) ) |
| 4 |
3
|
raleqdv |
|- ( x = y -> ( A. w e. ( ( (/) Sat (/) ) ` x ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 5 |
|
fveq2 |
|- ( x = suc y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` suc y ) ) |
| 6 |
5
|
raleqdv |
|- ( x = suc y -> ( A. w e. ( ( (/) Sat (/) ) ` x ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. w e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 7 |
|
fveq2 |
|- ( x = N -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` N ) ) |
| 8 |
7
|
raleqdv |
|- ( x = N -> ( A. w e. ( ( (/) Sat (/) ) ` x ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. w e. ( ( (/) Sat (/) ) ` N ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 9 |
|
eqeq1 |
|- ( x = ( 1st ` w ) -> ( x = ( i e.g j ) <-> ( 1st ` w ) = ( i e.g j ) ) ) |
| 10 |
9
|
2rexbidv |
|- ( x = ( 1st ` w ) -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) ) |
| 11 |
10
|
anbi2d |
|- ( x = ( 1st ` w ) -> ( ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) <-> ( z = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) ) ) |
| 12 |
|
eqeq1 |
|- ( z = ( 2nd ` w ) -> ( z = (/) <-> ( 2nd ` w ) = (/) ) ) |
| 13 |
12
|
anbi1d |
|- ( z = ( 2nd ` w ) -> ( ( z = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) <-> ( ( 2nd ` w ) = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) ) ) |
| 14 |
11 13
|
elopabi |
|- ( w e. { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } -> ( ( 2nd ` w ) = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) ) |
| 15 |
|
goel |
|- ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) = <. (/) , <. i , j >. >. ) |
| 16 |
15
|
eqeq2d |
|- ( ( i e. _om /\ j e. _om ) -> ( ( 1st ` w ) = ( i e.g j ) <-> ( 1st ` w ) = <. (/) , <. i , j >. >. ) ) |
| 17 |
|
omex |
|- _om e. _V |
| 18 |
17 17
|
pm3.2i |
|- ( _om e. _V /\ _om e. _V ) |
| 19 |
|
peano1 |
|- (/) e. _om |
| 20 |
19
|
a1i |
|- ( ( i e. _om /\ j e. _om ) -> (/) e. _om ) |
| 21 |
|
opelxpi |
|- ( ( i e. _om /\ j e. _om ) -> <. i , j >. e. ( _om X. _om ) ) |
| 22 |
20 21
|
opelxpd |
|- ( ( i e. _om /\ j e. _om ) -> <. (/) , <. i , j >. >. e. ( _om X. ( _om X. _om ) ) ) |
| 23 |
|
xpeq12 |
|- ( ( a = _om /\ b = _om ) -> ( a X. b ) = ( _om X. _om ) ) |
| 24 |
23
|
xpeq2d |
|- ( ( a = _om /\ b = _om ) -> ( _om X. ( a X. b ) ) = ( _om X. ( _om X. _om ) ) ) |
| 25 |
24
|
eleq2d |
|- ( ( a = _om /\ b = _om ) -> ( <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) <-> <. (/) , <. i , j >. >. e. ( _om X. ( _om X. _om ) ) ) ) |
| 26 |
25
|
spc2egv |
|- ( ( _om e. _V /\ _om e. _V ) -> ( <. (/) , <. i , j >. >. e. ( _om X. ( _om X. _om ) ) -> E. a E. b <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) ) ) |
| 27 |
18 22 26
|
mpsyl |
|- ( ( i e. _om /\ j e. _om ) -> E. a E. b <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) ) |
| 28 |
|
eleq1 |
|- ( ( 1st ` w ) = <. (/) , <. i , j >. >. -> ( ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) ) ) |
| 29 |
28
|
2exbidv |
|- ( ( 1st ` w ) = <. (/) , <. i , j >. >. -> ( E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> E. a E. b <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) ) ) |
| 30 |
27 29
|
syl5ibrcom |
|- ( ( i e. _om /\ j e. _om ) -> ( ( 1st ` w ) = <. (/) , <. i , j >. >. -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 31 |
16 30
|
sylbid |
|- ( ( i e. _om /\ j e. _om ) -> ( ( 1st ` w ) = ( i e.g j ) -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 32 |
31
|
rexlimivv |
|- ( E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| 33 |
32
|
adantl |
|- ( ( ( 2nd ` w ) = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| 34 |
14 33
|
syl |
|- ( w e. { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| 35 |
|
satf00 |
|- ( ( (/) Sat (/) ) ` (/) ) = { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
| 36 |
34 35
|
eleq2s |
|- ( w e. ( ( (/) Sat (/) ) ` (/) ) -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| 37 |
36
|
rgen |
|- A. w e. ( ( (/) Sat (/) ) ` (/) ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) |
| 38 |
|
omsucelsucb |
|- ( y e. _om <-> suc y e. suc _om ) |
| 39 |
|
satf0sucom |
|- ( suc y e. suc _om -> ( ( (/) Sat (/) ) ` suc y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) ) |
| 40 |
38 39
|
sylbi |
|- ( y e. _om -> ( ( (/) Sat (/) ) ` suc y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) ) |
| 41 |
40
|
adantr |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( (/) Sat (/) ) ` suc y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) ) |
| 42 |
|
nnon |
|- ( y e. _om -> y e. On ) |
| 43 |
|
rdgsuc |
|- ( y e. On -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) ) |
| 44 |
42 43
|
syl |
|- ( y e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) ) |
| 45 |
44
|
adantr |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) ) |
| 46 |
|
elelsuc |
|- ( y e. _om -> y e. suc _om ) |
| 47 |
|
satf0sucom |
|- ( y e. suc _om -> ( ( (/) Sat (/) ) ` y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) |
| 48 |
46 47
|
syl |
|- ( y e. _om -> ( ( (/) Sat (/) ) ` y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) |
| 49 |
48
|
eqcomd |
|- ( y e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) = ( ( (/) Sat (/) ) ` y ) ) |
| 50 |
49
|
fveq2d |
|- ( y e. _om -> ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` y ) ) ) |
| 51 |
50
|
adantr |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` y ) ) ) |
| 52 |
|
eqidd |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 53 |
|
id |
|- ( f = ( ( (/) Sat (/) ) ` y ) -> f = ( ( (/) Sat (/) ) ` y ) ) |
| 54 |
|
rexeq |
|- ( f = ( ( (/) Sat (/) ) ` y ) -> ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 55 |
54
|
orbi1d |
|- ( f = ( ( (/) Sat (/) ) ` y ) -> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 56 |
55
|
rexeqbi1dv |
|- ( f = ( ( (/) Sat (/) ) ` y ) -> ( E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 57 |
56
|
anbi2d |
|- ( f = ( ( (/) Sat (/) ) ` y ) -> ( ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 58 |
57
|
opabbidv |
|- ( f = ( ( (/) Sat (/) ) ` y ) -> { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 59 |
53 58
|
uneq12d |
|- ( f = ( ( (/) Sat (/) ) ` y ) -> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 60 |
59
|
adantl |
|- ( ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) /\ f = ( ( (/) Sat (/) ) ` y ) ) -> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 61 |
|
fvexd |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( (/) Sat (/) ) ` y ) e. _V ) |
| 62 |
17
|
a1i |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> _om e. _V ) |
| 63 |
|
satf0suclem |
|- ( ( ( ( (/) Sat (/) ) ` y ) e. _V /\ ( ( (/) Sat (/) ) ` y ) e. _V /\ _om e. _V ) -> { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
| 64 |
61 61 62 63
|
syl3anc |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
| 65 |
|
unexg |
|- ( ( ( ( (/) Sat (/) ) ` y ) e. _V /\ { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) -> ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
| 66 |
61 64 65
|
syl2anc |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
| 67 |
52 60 61 66
|
fvmptd |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` y ) ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 68 |
45 51 67
|
3eqtrd |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 69 |
41 68
|
eqtrd |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( (/) Sat (/) ) ` suc y ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 70 |
69
|
eleq2d |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. ( ( (/) Sat (/) ) ` suc y ) <-> t e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 71 |
|
elun |
|- ( t e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) <-> ( t e. ( ( (/) Sat (/) ) ` y ) \/ t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 72 |
70 71
|
bitrdi |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. ( ( (/) Sat (/) ) ` suc y ) <-> ( t e. ( ( (/) Sat (/) ) ` y ) \/ t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 73 |
|
fveq2 |
|- ( w = t -> ( 1st ` w ) = ( 1st ` t ) ) |
| 74 |
73
|
eleq1d |
|- ( w = t -> ( ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 75 |
74
|
2exbidv |
|- ( w = t -> ( E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 76 |
75
|
rspccv |
|- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( t e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 77 |
76
|
adantl |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 78 |
|
fveq2 |
|- ( w = v -> ( 1st ` w ) = ( 1st ` v ) ) |
| 79 |
78
|
eleq1d |
|- ( w = v -> ( ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> ( 1st ` v ) e. ( _om X. ( a X. b ) ) ) ) |
| 80 |
79
|
2exbidv |
|- ( w = v -> ( E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> E. a E. b ( 1st ` v ) e. ( _om X. ( a X. b ) ) ) ) |
| 81 |
80
|
rspcva |
|- ( ( v e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` v ) e. ( _om X. ( a X. b ) ) ) |
| 82 |
|
sels |
|- ( ( 1st ` v ) e. ( _om X. ( a X. b ) ) -> E. s ( 1st ` v ) e. s ) |
| 83 |
82
|
exlimivv |
|- ( E. a E. b ( 1st ` v ) e. ( _om X. ( a X. b ) ) -> E. s ( 1st ` v ) e. s ) |
| 84 |
81 83
|
syl |
|- ( ( v e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. s ( 1st ` v ) e. s ) |
| 85 |
84
|
expcom |
|- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( v e. ( ( (/) Sat (/) ) ` y ) -> E. s ( 1st ` v ) e. s ) ) |
| 86 |
|
fveq2 |
|- ( w = u -> ( 1st ` w ) = ( 1st ` u ) ) |
| 87 |
86
|
eleq1d |
|- ( w = u -> ( ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> ( 1st ` u ) e. ( _om X. ( a X. b ) ) ) ) |
| 88 |
87
|
2exbidv |
|- ( w = u -> ( E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> E. a E. b ( 1st ` u ) e. ( _om X. ( a X. b ) ) ) ) |
| 89 |
88
|
rspcva |
|- ( ( u e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` u ) e. ( _om X. ( a X. b ) ) ) |
| 90 |
|
sels |
|- ( ( 1st ` u ) e. ( _om X. ( a X. b ) ) -> E. s ( 1st ` u ) e. s ) |
| 91 |
90
|
exlimivv |
|- ( E. a E. b ( 1st ` u ) e. ( _om X. ( a X. b ) ) -> E. s ( 1st ` u ) e. s ) |
| 92 |
89 91
|
syl |
|- ( ( u e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. s ( 1st ` u ) e. s ) |
| 93 |
|
eleq2w |
|- ( s = r -> ( ( 1st ` u ) e. s <-> ( 1st ` u ) e. r ) ) |
| 94 |
93
|
cbvexvw |
|- ( E. s ( 1st ` u ) e. s <-> E. r ( 1st ` u ) e. r ) |
| 95 |
|
vex |
|- r e. _V |
| 96 |
|
vex |
|- s e. _V |
| 97 |
95 96
|
pm3.2i |
|- ( r e. _V /\ s e. _V ) |
| 98 |
|
df-ov |
|- ( ( 1st ` u ) |g ( 1st ` v ) ) = ( |g ` <. ( 1st ` u ) , ( 1st ` v ) >. ) |
| 99 |
|
df-gona |
|- |g = ( e e. ( _V X. _V ) |-> <. 1o , e >. ) |
| 100 |
|
opeq2 |
|- ( e = <. ( 1st ` u ) , ( 1st ` v ) >. -> <. 1o , e >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
| 101 |
|
opelvvg |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> <. ( 1st ` u ) , ( 1st ` v ) >. e. ( _V X. _V ) ) |
| 102 |
|
opex |
|- <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. e. _V |
| 103 |
102
|
a1i |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. e. _V ) |
| 104 |
99 100 101 103
|
fvmptd3 |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> ( |g ` <. ( 1st ` u ) , ( 1st ` v ) >. ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
| 105 |
98 104
|
eqtrid |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
| 106 |
|
1onn |
|- 1o e. _om |
| 107 |
106
|
a1i |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> 1o e. _om ) |
| 108 |
|
opelxpi |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> <. ( 1st ` u ) , ( 1st ` v ) >. e. ( r X. s ) ) |
| 109 |
107 108
|
opelxpd |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. e. ( _om X. ( r X. s ) ) ) |
| 110 |
105 109
|
eqeltrd |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( r X. s ) ) ) |
| 111 |
|
xpeq12 |
|- ( ( a = r /\ b = s ) -> ( a X. b ) = ( r X. s ) ) |
| 112 |
111
|
xpeq2d |
|- ( ( a = r /\ b = s ) -> ( _om X. ( a X. b ) ) = ( _om X. ( r X. s ) ) ) |
| 113 |
112
|
eleq2d |
|- ( ( a = r /\ b = s ) -> ( ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) <-> ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( r X. s ) ) ) ) |
| 114 |
113
|
spc2egv |
|- ( ( r e. _V /\ s e. _V ) -> ( ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( r X. s ) ) -> E. a E. b ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) ) ) |
| 115 |
97 110 114
|
mpsyl |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> E. a E. b ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) ) |
| 116 |
|
eleq1 |
|- ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( 1st ` t ) e. ( _om X. ( a X. b ) ) <-> ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) ) ) |
| 117 |
116
|
2exbidv |
|- ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) <-> E. a E. b ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) ) ) |
| 118 |
115 117
|
syl5ibrcom |
|- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 119 |
118
|
ex |
|- ( ( 1st ` u ) e. r -> ( ( 1st ` v ) e. s -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 120 |
119
|
exlimdv |
|- ( ( 1st ` u ) e. r -> ( E. s ( 1st ` v ) e. s -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 121 |
120
|
com23 |
|- ( ( 1st ` u ) e. r -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 122 |
121
|
exlimiv |
|- ( E. r ( 1st ` u ) e. r -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 123 |
94 122
|
sylbi |
|- ( E. s ( 1st ` u ) e. s -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 124 |
92 123
|
syl |
|- ( ( u e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 125 |
124
|
expcom |
|- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( u e. ( ( (/) Sat (/) ) ` y ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 126 |
125
|
com24 |
|- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( E. s ( 1st ` v ) e. s -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( u e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 127 |
85 126
|
syld |
|- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( v e. ( ( (/) Sat (/) ) ` y ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( u e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 128 |
127
|
adantl |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( v e. ( ( (/) Sat (/) ) ` y ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( u e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 129 |
128
|
com14 |
|- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( v e. ( ( (/) Sat (/) ) ` y ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 130 |
129
|
rexlimdv |
|- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 131 |
17 96
|
pm3.2i |
|- ( _om e. _V /\ s e. _V ) |
| 132 |
|
df-goal |
|- A.g i ( 1st ` u ) = <. 2o , <. i , ( 1st ` u ) >. >. |
| 133 |
|
2onn |
|- 2o e. _om |
| 134 |
133
|
a1i |
|- ( ( ( 1st ` u ) e. s /\ i e. _om ) -> 2o e. _om ) |
| 135 |
|
opelxpi |
|- ( ( i e. _om /\ ( 1st ` u ) e. s ) -> <. i , ( 1st ` u ) >. e. ( _om X. s ) ) |
| 136 |
135
|
ancoms |
|- ( ( ( 1st ` u ) e. s /\ i e. _om ) -> <. i , ( 1st ` u ) >. e. ( _om X. s ) ) |
| 137 |
134 136
|
opelxpd |
|- ( ( ( 1st ` u ) e. s /\ i e. _om ) -> <. 2o , <. i , ( 1st ` u ) >. >. e. ( _om X. ( _om X. s ) ) ) |
| 138 |
132 137
|
eqeltrid |
|- ( ( ( 1st ` u ) e. s /\ i e. _om ) -> A.g i ( 1st ` u ) e. ( _om X. ( _om X. s ) ) ) |
| 139 |
138
|
3adant3 |
|- ( ( ( 1st ` u ) e. s /\ i e. _om /\ ( 1st ` t ) = A.g i ( 1st ` u ) ) -> A.g i ( 1st ` u ) e. ( _om X. ( _om X. s ) ) ) |
| 140 |
|
eleq1 |
|- ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( ( 1st ` t ) e. ( _om X. ( _om X. s ) ) <-> A.g i ( 1st ` u ) e. ( _om X. ( _om X. s ) ) ) ) |
| 141 |
140
|
3ad2ant3 |
|- ( ( ( 1st ` u ) e. s /\ i e. _om /\ ( 1st ` t ) = A.g i ( 1st ` u ) ) -> ( ( 1st ` t ) e. ( _om X. ( _om X. s ) ) <-> A.g i ( 1st ` u ) e. ( _om X. ( _om X. s ) ) ) ) |
| 142 |
139 141
|
mpbird |
|- ( ( ( 1st ` u ) e. s /\ i e. _om /\ ( 1st ` t ) = A.g i ( 1st ` u ) ) -> ( 1st ` t ) e. ( _om X. ( _om X. s ) ) ) |
| 143 |
|
xpeq12 |
|- ( ( a = _om /\ b = s ) -> ( a X. b ) = ( _om X. s ) ) |
| 144 |
143
|
xpeq2d |
|- ( ( a = _om /\ b = s ) -> ( _om X. ( a X. b ) ) = ( _om X. ( _om X. s ) ) ) |
| 145 |
144
|
eleq2d |
|- ( ( a = _om /\ b = s ) -> ( ( 1st ` t ) e. ( _om X. ( a X. b ) ) <-> ( 1st ` t ) e. ( _om X. ( _om X. s ) ) ) ) |
| 146 |
145
|
spc2egv |
|- ( ( _om e. _V /\ s e. _V ) -> ( ( 1st ` t ) e. ( _om X. ( _om X. s ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 147 |
131 142 146
|
mpsyl |
|- ( ( ( 1st ` u ) e. s /\ i e. _om /\ ( 1st ` t ) = A.g i ( 1st ` u ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) |
| 148 |
147
|
3exp |
|- ( ( 1st ` u ) e. s -> ( i e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 149 |
148
|
com23 |
|- ( ( 1st ` u ) e. s -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 150 |
149
|
a1d |
|- ( ( 1st ` u ) e. s -> ( y e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 151 |
150
|
exlimiv |
|- ( E. s ( 1st ` u ) e. s -> ( y e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 152 |
92 151
|
syl |
|- ( ( u e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( y e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 153 |
152
|
ex |
|- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( y e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) ) |
| 154 |
153
|
impcomd |
|- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 155 |
154
|
com24 |
|- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( i e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 156 |
155
|
rexlimdv |
|- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 157 |
130 156
|
jaod |
|- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 158 |
157
|
rexlimiv |
|- ( E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 159 |
158
|
adantl |
|- ( ( ( 2nd ` t ) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 160 |
|
eqeq1 |
|- ( x = ( 1st ` t ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 161 |
160
|
rexbidv |
|- ( x = ( 1st ` t ) -> ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 162 |
|
eqeq1 |
|- ( x = ( 1st ` t ) -> ( x = A.g i ( 1st ` u ) <-> ( 1st ` t ) = A.g i ( 1st ` u ) ) ) |
| 163 |
162
|
rexbidv |
|- ( x = ( 1st ` t ) -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) |
| 164 |
161 163
|
orbi12d |
|- ( x = ( 1st ` t ) -> ( ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) |
| 165 |
164
|
rexbidv |
|- ( x = ( 1st ` t ) -> ( E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) |
| 166 |
165
|
anbi2d |
|- ( x = ( 1st ` t ) -> ( ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) ) |
| 167 |
|
eqeq1 |
|- ( z = ( 2nd ` t ) -> ( z = (/) <-> ( 2nd ` t ) = (/) ) ) |
| 168 |
167
|
anbi1d |
|- ( z = ( 2nd ` t ) -> ( ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) <-> ( ( 2nd ` t ) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) ) |
| 169 |
166 168
|
elopabi |
|- ( t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } -> ( ( 2nd ` t ) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) |
| 170 |
159 169
|
syl11 |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 171 |
77 170
|
jaod |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( t e. ( ( (/) Sat (/) ) ` y ) \/ t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 172 |
72 171
|
sylbid |
|- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. ( ( (/) Sat (/) ) ` suc y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 173 |
172
|
ex |
|- ( y e. _om -> ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( t e. ( ( (/) Sat (/) ) ` suc y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 174 |
173
|
ralrimdv |
|- ( y e. _om -> ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> A. t e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 175 |
75
|
cbvralvw |
|- ( A. w e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. t e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) |
| 176 |
174 175
|
imbitrrdi |
|- ( y e. _om -> ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> A. w e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 177 |
2 4 6 8 37 176
|
finds |
|- ( N e. _om -> A. w e. ( ( (/) Sat (/) ) ` N ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |