Step |
Hyp |
Ref |
Expression |
1 |
|
scmatmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
scmatmat.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
scmatmat.s |
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) |
4 |
|
scmate.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
scmate.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
1 2 3 4 5
|
scmatmats |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 = { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } ) |
7 |
6
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ 𝑆 ↔ 𝑀 ∈ { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } ) ) |
8 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ↔ ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ) ) |
10 |
9
|
2ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ↔ ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ) ) |
12 |
11
|
elrab |
⊢ ( 𝑀 ∈ { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } ↔ ( 𝑀 ∈ 𝐵 ∧ ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 𝑀 𝑗 ) = ( 𝐼 𝑀 𝑗 ) ) |
14 |
|
eqeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 = 𝑗 ↔ 𝐼 = 𝑗 ) ) |
15 |
14
|
ifbid |
⊢ ( 𝑖 = 𝐼 → if ( 𝑖 = 𝑗 , 𝑐 , 0 ) = if ( 𝐼 = 𝑗 , 𝑐 , 0 ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ↔ ( 𝐼 𝑀 𝑗 ) = if ( 𝐼 = 𝑗 , 𝑐 , 0 ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝐼 𝑀 𝑗 ) = ( 𝐼 𝑀 𝐽 ) ) |
18 |
|
eqeq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝐼 = 𝑗 ↔ 𝐼 = 𝐽 ) ) |
19 |
18
|
ifbid |
⊢ ( 𝑗 = 𝐽 → if ( 𝐼 = 𝑗 , 𝑐 , 0 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) |
20 |
17 19
|
eqeq12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 𝑀 𝑗 ) = if ( 𝐼 = 𝑗 , 𝑐 , 0 ) ↔ ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) |
21 |
16 20
|
rspc2v |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) |
22 |
21
|
reximdv |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ∃ 𝑐 ∈ 𝐾 ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) |
23 |
22
|
com12 |
⊢ ( ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ∃ 𝑐 ∈ 𝐾 ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ∃ 𝑐 ∈ 𝐾 ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) |
25 |
24
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑀 ∈ 𝐵 ∧ ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ∃ 𝑐 ∈ 𝐾 ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) ) |
26 |
12 25
|
syl5bi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑚 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑐 , 0 ) } → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ∃ 𝑐 ∈ 𝐾 ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) ) |
27 |
7 26
|
sylbid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ 𝑆 → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ∃ 𝑐 ∈ 𝐾 ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) ) |
28 |
27
|
ex |
⊢ ( 𝑁 ∈ Fin → ( 𝑅 ∈ Ring → ( 𝑀 ∈ 𝑆 → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ∃ 𝑐 ∈ 𝐾 ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) ) ) ) |
29 |
28
|
3imp1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ∃ 𝑐 ∈ 𝐾 ( 𝐼 𝑀 𝐽 ) = if ( 𝐼 = 𝐽 , 𝑐 , 0 ) ) |