Metamath Proof Explorer


Theorem scottexf

Description: A version of scottex with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scottexf.1 𝑦 𝐴
scottexf.2 𝑥 𝐴
Assertion scottexf { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V

Proof

Step Hyp Ref Expression
1 scottexf.1 𝑦 𝐴
2 scottexf.2 𝑥 𝐴
3 nfcv 𝑧 𝐴
4 nfv 𝑧 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 )
5 nfv 𝑦 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 )
6 fveq2 ( 𝑦 = 𝑧 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) )
7 6 sseq2d ( 𝑦 = 𝑧 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) )
8 1 3 4 5 7 cbvralfw ( ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) )
9 8 rabbii { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) }
10 nfcv 𝑤 𝐴
11 nfv 𝑥 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 )
12 2 11 nfralw 𝑥𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 )
13 nfv 𝑤𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 )
14 fveq2 ( 𝑤 = 𝑥 → ( rank ‘ 𝑤 ) = ( rank ‘ 𝑥 ) )
15 14 sseq1d ( 𝑤 = 𝑥 → ( ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) )
16 15 ralbidv ( 𝑤 = 𝑥 → ( ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) ↔ ∀ 𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) )
17 10 2 12 13 16 cbvrabw { 𝑤𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) } = { 𝑥𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) }
18 9 17 eqtr4i { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑤𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) }
19 scottex { 𝑤𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) } ∈ V
20 18 19 eqeltri { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V