| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scottexf.1 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 2 |  | scottexf.2 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑧 𝐴 | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑧 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑦 ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑦 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑧 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( rank ‘ 𝑦 )  =  ( rank ‘ 𝑧 ) ) | 
						
							| 7 | 6 | sseq2d | ⊢ ( 𝑦  =  𝑧  →  ( ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑦 )  ↔  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑧 ) ) ) | 
						
							| 8 | 1 3 4 5 7 | cbvralfw | ⊢ ( ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑦 )  ↔  ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑧 ) ) | 
						
							| 9 | 8 | rabbii | ⊢ { 𝑥  ∈  𝐴  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑦 ) }  =  { 𝑥  ∈  𝐴  ∣  ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑧 ) } | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑤 𝐴 | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑥 ( rank ‘ 𝑤 )  ⊆  ( rank ‘ 𝑧 ) | 
						
							| 12 | 2 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑤 )  ⊆  ( rank ‘ 𝑧 ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑧 ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( rank ‘ 𝑤 )  =  ( rank ‘ 𝑥 ) ) | 
						
							| 15 | 14 | sseq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( rank ‘ 𝑤 )  ⊆  ( rank ‘ 𝑧 )  ↔  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑧 ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑤  =  𝑥  →  ( ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑤 )  ⊆  ( rank ‘ 𝑧 )  ↔  ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑧 ) ) ) | 
						
							| 17 | 10 2 12 13 16 | cbvrabw | ⊢ { 𝑤  ∈  𝐴  ∣  ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑤 )  ⊆  ( rank ‘ 𝑧 ) }  =  { 𝑥  ∈  𝐴  ∣  ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑧 ) } | 
						
							| 18 | 9 17 | eqtr4i | ⊢ { 𝑥  ∈  𝐴  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑦 ) }  =  { 𝑤  ∈  𝐴  ∣  ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑤 )  ⊆  ( rank ‘ 𝑧 ) } | 
						
							| 19 |  | scottex | ⊢ { 𝑤  ∈  𝐴  ∣  ∀ 𝑧  ∈  𝐴 ( rank ‘ 𝑤 )  ⊆  ( rank ‘ 𝑧 ) }  ∈  V | 
						
							| 20 | 18 19 | eqeltri | ⊢ { 𝑥  ∈  𝐴  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝑦 ) }  ∈  V |