Metamath Proof Explorer


Theorem scottexf

Description: A version of scottex with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scottexf.1 _ y A
scottexf.2 _ x A
Assertion scottexf x A | y A rank x rank y V

Proof

Step Hyp Ref Expression
1 scottexf.1 _ y A
2 scottexf.2 _ x A
3 nfcv _ z A
4 nfv z rank x rank y
5 nfv y rank x rank z
6 fveq2 y = z rank y = rank z
7 6 sseq2d y = z rank x rank y rank x rank z
8 1 3 4 5 7 cbvralfw y A rank x rank y z A rank x rank z
9 8 rabbii x A | y A rank x rank y = x A | z A rank x rank z
10 nfcv _ w A
11 nfv x rank w rank z
12 2 11 nfralw x z A rank w rank z
13 nfv w z A rank x rank z
14 fveq2 w = x rank w = rank x
15 14 sseq1d w = x rank w rank z rank x rank z
16 15 ralbidv w = x z A rank w rank z z A rank x rank z
17 10 2 12 13 16 cbvrabw w A | z A rank w rank z = x A | z A rank x rank z
18 9 17 eqtr4i x A | y A rank x rank y = w A | z A rank w rank z
19 scottex w A | z A rank w rank z V
20 18 19 eqeltri x A | y A rank x rank y V