| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scottexf.1 |  |-  F/_ y A | 
						
							| 2 |  | scottexf.2 |  |-  F/_ x A | 
						
							| 3 |  | nfcv |  |-  F/_ z A | 
						
							| 4 |  | nfv |  |-  F/ z ( rank ` x ) C_ ( rank ` y ) | 
						
							| 5 |  | nfv |  |-  F/ y ( rank ` x ) C_ ( rank ` z ) | 
						
							| 6 |  | fveq2 |  |-  ( y = z -> ( rank ` y ) = ( rank ` z ) ) | 
						
							| 7 | 6 | sseq2d |  |-  ( y = z -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` z ) ) ) | 
						
							| 8 | 1 3 4 5 7 | cbvralfw |  |-  ( A. y e. A ( rank ` x ) C_ ( rank ` y ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) ) | 
						
							| 9 | 8 | rabbii |  |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) } | 
						
							| 10 |  | nfcv |  |-  F/_ w A | 
						
							| 11 |  | nfv |  |-  F/ x ( rank ` w ) C_ ( rank ` z ) | 
						
							| 12 | 2 11 | nfralw |  |-  F/ x A. z e. A ( rank ` w ) C_ ( rank ` z ) | 
						
							| 13 |  | nfv |  |-  F/ w A. z e. A ( rank ` x ) C_ ( rank ` z ) | 
						
							| 14 |  | fveq2 |  |-  ( w = x -> ( rank ` w ) = ( rank ` x ) ) | 
						
							| 15 | 14 | sseq1d |  |-  ( w = x -> ( ( rank ` w ) C_ ( rank ` z ) <-> ( rank ` x ) C_ ( rank ` z ) ) ) | 
						
							| 16 | 15 | ralbidv |  |-  ( w = x -> ( A. z e. A ( rank ` w ) C_ ( rank ` z ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) ) ) | 
						
							| 17 | 10 2 12 13 16 | cbvrabw |  |-  { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) } | 
						
							| 18 | 9 17 | eqtr4i |  |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } | 
						
							| 19 |  | scottex |  |-  { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } e. _V | 
						
							| 20 | 18 19 | eqeltri |  |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V |