Step |
Hyp |
Ref |
Expression |
1 |
|
scottexf.1 |
|- F/_ y A |
2 |
|
scottexf.2 |
|- F/_ x A |
3 |
|
nfcv |
|- F/_ z A |
4 |
|
nfv |
|- F/ z ( rank ` x ) C_ ( rank ` y ) |
5 |
|
nfv |
|- F/ y ( rank ` x ) C_ ( rank ` z ) |
6 |
|
fveq2 |
|- ( y = z -> ( rank ` y ) = ( rank ` z ) ) |
7 |
6
|
sseq2d |
|- ( y = z -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` z ) ) ) |
8 |
1 3 4 5 7
|
cbvralfw |
|- ( A. y e. A ( rank ` x ) C_ ( rank ` y ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) ) |
9 |
8
|
rabbii |
|- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) } |
10 |
|
nfcv |
|- F/_ w A |
11 |
|
nfv |
|- F/ x ( rank ` w ) C_ ( rank ` z ) |
12 |
2 11
|
nfralw |
|- F/ x A. z e. A ( rank ` w ) C_ ( rank ` z ) |
13 |
|
nfv |
|- F/ w A. z e. A ( rank ` x ) C_ ( rank ` z ) |
14 |
|
fveq2 |
|- ( w = x -> ( rank ` w ) = ( rank ` x ) ) |
15 |
14
|
sseq1d |
|- ( w = x -> ( ( rank ` w ) C_ ( rank ` z ) <-> ( rank ` x ) C_ ( rank ` z ) ) ) |
16 |
15
|
ralbidv |
|- ( w = x -> ( A. z e. A ( rank ` w ) C_ ( rank ` z ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) ) ) |
17 |
10 2 12 13 16
|
cbvrabw |
|- { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) } |
18 |
9 17
|
eqtr4i |
|- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } |
19 |
|
scottex |
|- { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } e. _V |
20 |
18 19
|
eqeltri |
|- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V |