Metamath Proof Explorer


Theorem scottexf

Description: A version of scottex with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scottexf.1
|- F/_ y A
scottexf.2
|- F/_ x A
Assertion scottexf
|- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V

Proof

Step Hyp Ref Expression
1 scottexf.1
 |-  F/_ y A
2 scottexf.2
 |-  F/_ x A
3 nfcv
 |-  F/_ z A
4 nfv
 |-  F/ z ( rank ` x ) C_ ( rank ` y )
5 nfv
 |-  F/ y ( rank ` x ) C_ ( rank ` z )
6 fveq2
 |-  ( y = z -> ( rank ` y ) = ( rank ` z ) )
7 6 sseq2d
 |-  ( y = z -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` z ) ) )
8 1 3 4 5 7 cbvralfw
 |-  ( A. y e. A ( rank ` x ) C_ ( rank ` y ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) )
9 8 rabbii
 |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) }
10 nfcv
 |-  F/_ w A
11 nfv
 |-  F/ x ( rank ` w ) C_ ( rank ` z )
12 2 11 nfralw
 |-  F/ x A. z e. A ( rank ` w ) C_ ( rank ` z )
13 nfv
 |-  F/ w A. z e. A ( rank ` x ) C_ ( rank ` z )
14 fveq2
 |-  ( w = x -> ( rank ` w ) = ( rank ` x ) )
15 14 sseq1d
 |-  ( w = x -> ( ( rank ` w ) C_ ( rank ` z ) <-> ( rank ` x ) C_ ( rank ` z ) ) )
16 15 ralbidv
 |-  ( w = x -> ( A. z e. A ( rank ` w ) C_ ( rank ` z ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) ) )
17 10 2 12 13 16 cbvrabw
 |-  { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) }
18 9 17 eqtr4i
 |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) }
19 scottex
 |-  { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } e. _V
20 18 19 eqeltri
 |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } e. _V