Step |
Hyp |
Ref |
Expression |
1 |
|
sectmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
sectmon.m |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
3 |
|
sectmon.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
4 |
|
sectmon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
sectmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
sectmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
sectmon.1 |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
10 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
11 |
1 8 9 10 3 4 5 6
|
issect |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
12 |
7 11
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
13 |
12
|
simp1d |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
14 |
|
oveq2 |
⊢ ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) = ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ) ) |
15 |
12
|
simp3d |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) ) |
18 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑥 ∈ 𝐵 ) |
20 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
21 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
22 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
23 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
24 |
12
|
simp2d |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
26 |
1 8 9 18 19 20 21 22 23 20 25
|
catass |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ) |
27 |
1 8 10 18 19 9 20 22
|
catlid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = 𝑔 ) |
28 |
17 26 27
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) = 𝑔 ) |
29 |
16
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ℎ ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ℎ ) ) |
30 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
31 |
1 8 9 18 19 20 21 30 23 20 25
|
catass |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ℎ ) = ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ) ) |
32 |
1 8 10 18 19 9 20 30
|
catlid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ℎ ) = ℎ ) |
33 |
29 31 32
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ) = ℎ ) |
34 |
28 33
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) = ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ) ↔ 𝑔 = ℎ ) ) |
35 |
14 34
|
syl5ib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
36 |
35
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
37 |
36
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
38 |
1 8 9 2 4 5 6
|
ismon2 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
39 |
13 37 38
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) |