Metamath Proof Explorer


Theorem soex

Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion soex ( ( 𝑅 Or 𝐴𝑅𝑉 ) → 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 simpr ( ( ( 𝑅 Or 𝐴𝑅𝑉 ) ∧ 𝐴 = ∅ ) → 𝐴 = ∅ )
2 0ex ∅ ∈ V
3 1 2 eqeltrdi ( ( ( 𝑅 Or 𝐴𝑅𝑉 ) ∧ 𝐴 = ∅ ) → 𝐴 ∈ V )
4 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
5 snex { 𝑥 } ∈ V
6 dmexg ( 𝑅𝑉 → dom 𝑅 ∈ V )
7 rnexg ( 𝑅𝑉 → ran 𝑅 ∈ V )
8 unexg ( ( dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V ) → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V )
9 6 7 8 syl2anc ( 𝑅𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V )
10 unexg ( ( { 𝑥 } ∈ V ∧ ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V )
11 5 9 10 sylancr ( 𝑅𝑉 → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V )
12 11 ad2antlr ( ( ( 𝑅 Or 𝐴𝑅𝑉 ) ∧ 𝑥𝐴 ) → ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V )
13 sossfld ( ( 𝑅 Or 𝐴𝑥𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
14 13 adantlr ( ( ( 𝑅 Or 𝐴𝑅𝑉 ) ∧ 𝑥𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
15 ssundif ( 𝐴 ⊆ ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) ↔ ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
16 14 15 sylibr ( ( ( 𝑅 Or 𝐴𝑅𝑉 ) ∧ 𝑥𝐴 ) → 𝐴 ⊆ ( { 𝑥 } ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) )
17 12 16 ssexd ( ( ( 𝑅 Or 𝐴𝑅𝑉 ) ∧ 𝑥𝐴 ) → 𝐴 ∈ V )
18 17 ex ( ( 𝑅 Or 𝐴𝑅𝑉 ) → ( 𝑥𝐴𝐴 ∈ V ) )
19 18 exlimdv ( ( 𝑅 Or 𝐴𝑅𝑉 ) → ( ∃ 𝑥 𝑥𝐴𝐴 ∈ V ) )
20 19 imp ( ( ( 𝑅 Or 𝐴𝑅𝑉 ) ∧ ∃ 𝑥 𝑥𝐴 ) → 𝐴 ∈ V )
21 4 20 sylan2b ( ( ( 𝑅 Or 𝐴𝑅𝑉 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ V )
22 3 21 pm2.61dane ( ( 𝑅 Or 𝐴𝑅𝑉 ) → 𝐴 ∈ V )