Metamath Proof Explorer


Theorem srgisid

Description: In a semiring, the only left-absorbing element is the additive identity. Remark in Golan p. 1. (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Hypotheses srgz.b 𝐵 = ( Base ‘ 𝑅 )
srgz.t · = ( .r𝑅 )
srgz.z 0 = ( 0g𝑅 )
srgisid.1 ( 𝜑𝑅 ∈ SRing )
srgisid.2 ( 𝜑𝑍𝐵 )
srgisid.3 ( ( 𝜑𝑥𝐵 ) → ( 𝑍 · 𝑥 ) = 𝑍 )
Assertion srgisid ( 𝜑𝑍 = 0 )

Proof

Step Hyp Ref Expression
1 srgz.b 𝐵 = ( Base ‘ 𝑅 )
2 srgz.t · = ( .r𝑅 )
3 srgz.z 0 = ( 0g𝑅 )
4 srgisid.1 ( 𝜑𝑅 ∈ SRing )
5 srgisid.2 ( 𝜑𝑍𝐵 )
6 srgisid.3 ( ( 𝜑𝑥𝐵 ) → ( 𝑍 · 𝑥 ) = 𝑍 )
7 6 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 ( 𝑍 · 𝑥 ) = 𝑍 )
8 1 3 srg0cl ( 𝑅 ∈ SRing → 0𝐵 )
9 oveq2 ( 𝑥 = 0 → ( 𝑍 · 𝑥 ) = ( 𝑍 · 0 ) )
10 9 eqeq1d ( 𝑥 = 0 → ( ( 𝑍 · 𝑥 ) = 𝑍 ↔ ( 𝑍 · 0 ) = 𝑍 ) )
11 10 rspcv ( 0𝐵 → ( ∀ 𝑥𝐵 ( 𝑍 · 𝑥 ) = 𝑍 → ( 𝑍 · 0 ) = 𝑍 ) )
12 4 8 11 3syl ( 𝜑 → ( ∀ 𝑥𝐵 ( 𝑍 · 𝑥 ) = 𝑍 → ( 𝑍 · 0 ) = 𝑍 ) )
13 7 12 mpd ( 𝜑 → ( 𝑍 · 0 ) = 𝑍 )
14 1 2 3 srgrz ( ( 𝑅 ∈ SRing ∧ 𝑍𝐵 ) → ( 𝑍 · 0 ) = 0 )
15 4 5 14 syl2anc ( 𝜑 → ( 𝑍 · 0 ) = 0 )
16 13 15 eqtr3d ( 𝜑𝑍 = 0 )