Step |
Hyp |
Ref |
Expression |
1 |
|
srgz.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
srgz.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
srgz.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
srgisid.1 |
⊢ ( 𝜑 → 𝑅 ∈ SRing ) |
5 |
|
srgisid.2 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
6 |
|
srgisid.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑍 · 𝑥 ) = 𝑍 ) |
7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑍 · 𝑥 ) = 𝑍 ) |
8 |
1 3
|
srg0cl |
⊢ ( 𝑅 ∈ SRing → 0 ∈ 𝐵 ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝑍 · 𝑥 ) = ( 𝑍 · 0 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑍 · 𝑥 ) = 𝑍 ↔ ( 𝑍 · 0 ) = 𝑍 ) ) |
11 |
10
|
rspcv |
⊢ ( 0 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑍 · 𝑥 ) = 𝑍 → ( 𝑍 · 0 ) = 𝑍 ) ) |
12 |
4 8 11
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑍 · 𝑥 ) = 𝑍 → ( 𝑍 · 0 ) = 𝑍 ) ) |
13 |
7 12
|
mpd |
⊢ ( 𝜑 → ( 𝑍 · 0 ) = 𝑍 ) |
14 |
1 2 3
|
srgrz |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 · 0 ) = 0 ) |
15 |
4 5 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑍 · 0 ) = 0 ) |
16 |
13 15
|
eqtr3d |
⊢ ( 𝜑 → 𝑍 = 0 ) |