| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submrc.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
| 2 |
|
submrc.g |
⊢ 𝐺 = ( mrCls ‘ ( 𝐶 ∩ 𝒫 𝐷 ) ) |
| 3 |
|
submre |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐷 ) ∈ ( Moore ‘ 𝐷 ) ) |
| 4 |
3
|
3adant3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐶 ∩ 𝒫 𝐷 ) ∈ ( Moore ‘ 𝐷 ) ) |
| 5 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝑈 ⊆ 𝐷 ) |
| 7 |
|
mress |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ) → 𝐷 ⊆ 𝑋 ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝐷 ⊆ 𝑋 ) |
| 9 |
6 8
|
sstrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝑈 ⊆ 𝑋 ) |
| 10 |
5 1 9
|
mrcssidd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) |
| 11 |
1
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝐶 ) |
| 12 |
5 9 11
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝐶 ) |
| 13 |
1
|
mrcsscl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐷 ∧ 𝐷 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) ⊆ 𝐷 ) |
| 14 |
13
|
3com23 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ⊆ 𝐷 ) |
| 15 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑈 ) ∈ V |
| 16 |
15
|
elpw |
⊢ ( ( 𝐹 ‘ 𝑈 ) ∈ 𝒫 𝐷 ↔ ( 𝐹 ‘ 𝑈 ) ⊆ 𝐷 ) |
| 17 |
14 16
|
sylibr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝒫 𝐷 ) |
| 18 |
12 17
|
elind |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ∈ ( 𝐶 ∩ 𝒫 𝐷 ) ) |
| 19 |
2
|
mrcsscl |
⊢ ( ( ( 𝐶 ∩ 𝒫 𝐷 ) ∈ ( Moore ‘ 𝐷 ) ∧ 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑈 ) ∈ ( 𝐶 ∩ 𝒫 𝐷 ) ) → ( 𝐺 ‘ 𝑈 ) ⊆ ( 𝐹 ‘ 𝑈 ) ) |
| 20 |
4 10 18 19
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) ⊆ ( 𝐹 ‘ 𝑈 ) ) |
| 21 |
4 2 6
|
mrcssidd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝑈 ⊆ ( 𝐺 ‘ 𝑈 ) ) |
| 22 |
2
|
mrccl |
⊢ ( ( ( 𝐶 ∩ 𝒫 𝐷 ) ∈ ( Moore ‘ 𝐷 ) ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) ∈ ( 𝐶 ∩ 𝒫 𝐷 ) ) |
| 23 |
4 6 22
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) ∈ ( 𝐶 ∩ 𝒫 𝐷 ) ) |
| 24 |
23
|
elin1d |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) ∈ 𝐶 ) |
| 25 |
1
|
mrcsscl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ ( 𝐺 ‘ 𝑈 ) ∧ ( 𝐺 ‘ 𝑈 ) ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) ⊆ ( 𝐺 ‘ 𝑈 ) ) |
| 26 |
5 21 24 25
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ⊆ ( 𝐺 ‘ 𝑈 ) ) |
| 27 |
20 26
|
eqssd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑈 ) ) |