| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrleubrnmptf.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
supxrleubrnmptf.a |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
supxrleubrnmptf.n |
⊢ Ⅎ 𝑥 𝐶 |
| 4 |
|
supxrleubrnmptf.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 5 |
|
supxrleubrnmptf.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 8 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 9 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 10 |
2 6 7 8 9
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 11 |
10
|
rneqi |
⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ran ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 12 |
11
|
supeq1i |
⊢ sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) , ℝ* , < ) |
| 13 |
12
|
breq1i |
⊢ ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ sup ( ran ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ) |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ sup ( ran ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ) ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 16 |
2
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 17 |
1 16
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) |
| 18 |
8
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ* |
| 19 |
17 18
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ* ) |
| 20 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 21 |
20
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 22 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℝ* ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ* ) ) |
| 23 |
21 22
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ* ) ) ) |
| 24 |
19 23 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ* ) |
| 25 |
15 24 5
|
supxrleubrnmpt |
⊢ ( 𝜑 → ( sup ( ran ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ 𝐶 ) ) |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 27 |
8 26 3
|
nfbr |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ 𝐶 |
| 28 |
|
nfv |
⊢ Ⅎ 𝑦 𝐵 ≤ 𝐶 |
| 29 |
|
eqcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
| 30 |
29
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 31 |
|
eqcom |
⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 32 |
31
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
| 33 |
30 32
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
| 34 |
9 33
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 35 |
34
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶 ) ) |
| 36 |
6 2 27 28 35
|
cbvralfw |
⊢ ( ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |
| 38 |
14 25 37
|
3bitrd |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |