| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3orass |
⊢ ( ( 𝐵 ≤ 𝐴 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ↔ ( 𝐵 ≤ 𝐴 ∨ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ) |
| 2 |
|
pm2.24 |
⊢ ( 𝐵 ≤ 𝐴 → ( ¬ 𝐵 ≤ 𝐴 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) ) |
| 3 |
|
swrdval |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = if ( ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 , ( 𝑥 ∈ ( 0 ..^ ( 𝐵 − 𝐴 ) ) ↦ ( 𝑊 ‘ ( 𝑥 + 𝐴 ) ) ) , ∅ ) ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = if ( ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 , ( 𝑥 ∈ ( 0 ..^ ( 𝐵 − 𝐴 ) ) ↦ ( 𝑊 ‘ ( 𝑥 + 𝐴 ) ) ) , ∅ ) ) |
| 5 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 6 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 7 |
|
3anass |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) |
| 8 |
|
ssfzoulel |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐵 ≤ 𝐴 ) ) ) |
| 9 |
8
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐵 ≤ 𝐴 ) ) |
| 10 |
7 9
|
sylanbr |
⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐵 ≤ 𝐴 ) ) |
| 11 |
10
|
con3dimp |
⊢ ( ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 12 |
|
sseq2 |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ↔ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 13 |
12
|
notbid |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ↔ ¬ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 14 |
11 13
|
imbitrrid |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) ) |
| 15 |
14
|
exp5j |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) ) ) ) ) |
| 16 |
5 6 15
|
sylc |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) ) ) ) |
| 17 |
16
|
3impib |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) ) ) |
| 18 |
17
|
imp31 |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) |
| 19 |
18
|
iffalsed |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → if ( ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 , ( 𝑥 ∈ ( 0 ..^ ( 𝐵 − 𝐴 ) ) ↦ ( 𝑊 ‘ ( 𝑥 + 𝐴 ) ) ) , ∅ ) = ∅ ) |
| 20 |
4 19
|
eqtrd |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
| 21 |
20
|
ex |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ¬ 𝐵 ≤ 𝐴 → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 22 |
21
|
expcom |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐵 ≤ 𝐴 → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) ) |
| 23 |
22
|
com23 |
⊢ ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ¬ 𝐵 ≤ 𝐴 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) ) |
| 24 |
2 23
|
jaoi |
⊢ ( ( 𝐵 ≤ 𝐴 ∨ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ¬ 𝐵 ≤ 𝐴 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) ) |
| 25 |
|
swrdlend |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 26 |
25
|
com12 |
⊢ ( 𝐵 ≤ 𝐴 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 27 |
24 26
|
pm2.61d2 |
⊢ ( ( 𝐵 ≤ 𝐴 ∨ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 28 |
1 27
|
sylbi |
⊢ ( ( 𝐵 ≤ 𝐴 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 29 |
28
|
com12 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |