| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → 𝐴 ∈ ℤ ) |
| 2 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 3 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 4 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
| 5 |
|
ltnle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
| 6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
| 7 |
6
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
| 8 |
7
|
biimpar |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → 𝐴 < 𝐵 ) |
| 9 |
|
ssfzo12 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 𝑁 ) ) ) |
| 10 |
1 2 8 9
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 𝑁 ) ) ) |
| 11 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 12 |
|
0red |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 0 ∈ ℝ ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 14 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ≤ 0 ∧ 0 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
| 15 |
11 12 13 14
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 0 ∧ 0 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
| 16 |
15
|
expcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ≤ 𝐴 → ( 𝐵 ≤ 0 → 𝐵 ≤ 𝐴 ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 0 ≤ 𝐴 ) → ( 𝐵 ≤ 0 → 𝐵 ≤ 𝐴 ) ) |
| 18 |
17
|
con3d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 0 ≤ 𝐴 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) |
| 19 |
18
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ≤ 𝐴 → ( ¬ 𝐵 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) ) |
| 20 |
19
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ≤ 𝐴 → ( ¬ 𝐵 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) ) |
| 21 |
20
|
com23 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐵 ≤ 𝐴 → ( 0 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( 0 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) |
| 23 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 24 |
4 23 3
|
3anim123i |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) |
| 25 |
24
|
3coml |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) |
| 26 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ≤ 𝑁 ∧ 𝑁 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 𝑁 ∧ 𝑁 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
| 28 |
27
|
expdimp |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ≤ 𝑁 ) → ( 𝑁 ≤ 𝐴 → 𝐵 ≤ 𝐴 ) ) |
| 29 |
28
|
con3d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ≤ 𝑁 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ 𝑁 ≤ 𝐴 ) ) |
| 30 |
29
|
impancom |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( 𝐵 ≤ 𝑁 → ¬ 𝑁 ≤ 𝐴 ) ) |
| 31 |
22 30
|
anim12d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 𝑁 ) → ( ¬ 𝐵 ≤ 0 ∧ ¬ 𝑁 ≤ 𝐴 ) ) ) |
| 32 |
|
ioran |
⊢ ( ¬ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ↔ ( ¬ 𝑁 ≤ 𝐴 ∧ ¬ 𝐵 ≤ 0 ) ) |
| 33 |
32
|
biancomi |
⊢ ( ¬ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ↔ ( ¬ 𝐵 ≤ 0 ∧ ¬ 𝑁 ≤ 𝐴 ) ) |
| 34 |
31 33
|
imbitrrdi |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 𝑁 ) → ¬ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ) |
| 35 |
10 34
|
syld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → ¬ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ) |
| 36 |
35
|
con2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) ) ) |
| 37 |
36
|
impancom |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) ) ) |
| 38 |
37
|
con4d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → 𝐵 ≤ 𝐴 ) ) |
| 39 |
38
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → 𝐵 ≤ 𝐴 ) ) ) |