Step |
Hyp |
Ref |
Expression |
1 |
|
t1connperf.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → 𝐽 ∈ Conn ) |
3 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ∈ 𝐽 ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
4
|
snnz |
⊢ { 𝑥 } ≠ ∅ |
6 |
5
|
a1i |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ≠ ∅ ) |
7 |
1
|
t1sncld |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
8 |
7
|
ad2ant2r |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
9 |
1 2 3 6 8
|
connclo |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } = 𝑋 ) |
10 |
4
|
ensn1 |
⊢ { 𝑥 } ≈ 1o |
11 |
9 10
|
eqbrtrrdi |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → 𝑋 ≈ 1o ) |
12 |
11
|
rexlimdvaa |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 → 𝑋 ≈ 1o ) ) |
13 |
12
|
con3d |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → ¬ ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 ) ) |
14 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ↔ ¬ ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 ) |
15 |
13 14
|
syl6ibr |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
16 |
|
t1top |
⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) |
17 |
16
|
adantr |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → 𝐽 ∈ Top ) |
18 |
1
|
isperf3 |
⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
19 |
18
|
baib |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Perf ↔ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
20 |
17 19
|
syl |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( 𝐽 ∈ Perf ↔ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
21 |
15 20
|
sylibrd |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → 𝐽 ∈ Perf ) ) |
22 |
21
|
3impia |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o ) → 𝐽 ∈ Perf ) |