Step |
Hyp |
Ref |
Expression |
1 |
|
tendoset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
tendoset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
4 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) ) |
7 |
6
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
8 |
7 7
|
feq23d |
⊢ ( 𝑘 = 𝐾 → ( 𝑠 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↔ 𝑠 : ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) ) |
9 |
7
|
raleqdv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ↔ ∀ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ) ) |
10 |
7 9
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ↔ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( trL ‘ 𝑘 ) = ( trL ‘ 𝐾 ) ) |
12 |
11
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
15 |
14 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
16 |
12
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) |
17 |
13 15 16
|
breq123d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ↔ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) ) |
18 |
7 17
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ↔ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) ) |
19 |
8 10 18
|
3anbi123d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑠 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ) ↔ ( 𝑠 : ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) ) ) |
20 |
19
|
abbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑠 ∣ ( 𝑠 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ) } = { 𝑠 ∣ ( 𝑠 : ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) } ) |
21 |
5 20
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑠 ∣ ( 𝑠 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ) } ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑠 ∣ ( 𝑠 : ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) } ) ) |
22 |
|
df-tendo |
⊢ TEndo = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑠 ∣ ( 𝑠 : ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ( le ‘ 𝑘 ) ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ) } ) ) |
23 |
21 22 2
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( TEndo ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑠 ∣ ( 𝑠 : ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) } ) ) |
24 |
3 23
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( TEndo ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑠 ∣ ( 𝑠 : ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ⟶ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∀ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) } ) ) |