Step |
Hyp |
Ref |
Expression |
1 |
|
tgjustc2.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tgjustc2.d |
⊢ 𝑅 Er ( 𝑃 × 𝑃 ) |
3 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
4 |
3 3
|
xpex |
⊢ ( 𝑃 × 𝑃 ) ∈ V |
5 |
|
tgjustr |
⊢ ( ( ( 𝑃 × 𝑃 ) ∈ V ∧ 𝑅 Er ( 𝑃 × 𝑃 ) ) → ∃ 𝑑 ( 𝑑 Fn ( 𝑃 × 𝑃 ) ∧ ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ) ) |
6 |
4 2 5
|
mp2an |
⊢ ∃ 𝑑 ( 𝑑 Fn ( 𝑃 × 𝑃 ) ∧ ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ) |
7 |
|
simplrl |
⊢ ( ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → 𝑤 ∈ 𝑃 ) |
8 |
|
simplrr |
⊢ ( ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → 𝑥 ∈ 𝑃 ) |
9 |
7 8
|
opelxpd |
⊢ ( ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → 〈 𝑤 , 𝑥 〉 ∈ ( 𝑃 × 𝑃 ) ) |
10 |
|
simprl |
⊢ ( ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → 𝑦 ∈ 𝑃 ) |
11 |
|
simprr |
⊢ ( ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → 𝑧 ∈ 𝑃 ) |
12 |
10 11
|
opelxpd |
⊢ ( ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → 〈 𝑦 , 𝑧 〉 ∈ ( 𝑃 × 𝑃 ) ) |
13 |
|
simpll |
⊢ ( ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ) |
14 |
|
breq1 |
⊢ ( 𝑢 = 〈 𝑤 , 𝑥 〉 → ( 𝑢 𝑅 𝑣 ↔ 〈 𝑤 , 𝑥 〉 𝑅 𝑣 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑢 = 〈 𝑤 , 𝑥 〉 → ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 〈 𝑤 , 𝑥 〉 ) ) |
16 |
|
df-ov |
⊢ ( 𝑤 𝑑 𝑥 ) = ( 𝑑 ‘ 〈 𝑤 , 𝑥 〉 ) |
17 |
15 16
|
eqtr4di |
⊢ ( 𝑢 = 〈 𝑤 , 𝑥 〉 → ( 𝑑 ‘ 𝑢 ) = ( 𝑤 𝑑 𝑥 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑢 = 〈 𝑤 , 𝑥 〉 → ( ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑑 ‘ 𝑣 ) ) ) |
19 |
14 18
|
bibi12d |
⊢ ( 𝑢 = 〈 𝑤 , 𝑥 〉 → ( ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ↔ ( 〈 𝑤 , 𝑥 〉 𝑅 𝑣 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑑 ‘ 𝑣 ) ) ) ) |
20 |
|
breq2 |
⊢ ( 𝑣 = 〈 𝑦 , 𝑧 〉 → ( 〈 𝑤 , 𝑥 〉 𝑅 𝑣 ↔ 〈 𝑤 , 𝑥 〉 𝑅 〈 𝑦 , 𝑧 〉 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑣 = 〈 𝑦 , 𝑧 〉 → ( 𝑑 ‘ 𝑣 ) = ( 𝑑 ‘ 〈 𝑦 , 𝑧 〉 ) ) |
22 |
|
df-ov |
⊢ ( 𝑦 𝑑 𝑧 ) = ( 𝑑 ‘ 〈 𝑦 , 𝑧 〉 ) |
23 |
21 22
|
eqtr4di |
⊢ ( 𝑣 = 〈 𝑦 , 𝑧 〉 → ( 𝑑 ‘ 𝑣 ) = ( 𝑦 𝑑 𝑧 ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑣 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑤 𝑑 𝑥 ) = ( 𝑑 ‘ 𝑣 ) ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑦 𝑑 𝑧 ) ) ) |
25 |
20 24
|
bibi12d |
⊢ ( 𝑣 = 〈 𝑦 , 𝑧 〉 → ( ( 〈 𝑤 , 𝑥 〉 𝑅 𝑣 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑑 ‘ 𝑣 ) ) ↔ ( 〈 𝑤 , 𝑥 〉 𝑅 〈 𝑦 , 𝑧 〉 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑦 𝑑 𝑧 ) ) ) ) |
26 |
19 25
|
rspc2va |
⊢ ( ( ( 〈 𝑤 , 𝑥 〉 ∈ ( 𝑃 × 𝑃 ) ∧ 〈 𝑦 , 𝑧 〉 ∈ ( 𝑃 × 𝑃 ) ) ∧ ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ) → ( 〈 𝑤 , 𝑥 〉 𝑅 〈 𝑦 , 𝑧 〉 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑦 𝑑 𝑧 ) ) ) |
27 |
9 12 13 26
|
syl21anc |
⊢ ( ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → ( 〈 𝑤 , 𝑥 〉 𝑅 〈 𝑦 , 𝑧 〉 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑦 𝑑 𝑧 ) ) ) |
28 |
27
|
ralrimivva |
⊢ ( ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃 ) ) → ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 〈 𝑤 , 𝑥 〉 𝑅 〈 𝑦 , 𝑧 〉 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑦 𝑑 𝑧 ) ) ) |
29 |
28
|
ralrimivva |
⊢ ( ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) → ∀ 𝑤 ∈ 𝑃 ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 〈 𝑤 , 𝑥 〉 𝑅 〈 𝑦 , 𝑧 〉 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑦 𝑑 𝑧 ) ) ) |
30 |
29
|
anim2i |
⊢ ( ( 𝑑 Fn ( 𝑃 × 𝑃 ) ∧ ∀ 𝑢 ∈ ( 𝑃 × 𝑃 ) ∀ 𝑣 ∈ ( 𝑃 × 𝑃 ) ( 𝑢 𝑅 𝑣 ↔ ( 𝑑 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑣 ) ) ) → ( 𝑑 Fn ( 𝑃 × 𝑃 ) ∧ ∀ 𝑤 ∈ 𝑃 ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 〈 𝑤 , 𝑥 〉 𝑅 〈 𝑦 , 𝑧 〉 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑦 𝑑 𝑧 ) ) ) ) |
31 |
6 30
|
eximii |
⊢ ∃ 𝑑 ( 𝑑 Fn ( 𝑃 × 𝑃 ) ∧ ∀ 𝑤 ∈ 𝑃 ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 〈 𝑤 , 𝑥 〉 𝑅 〈 𝑦 , 𝑧 〉 ↔ ( 𝑤 𝑑 𝑥 ) = ( 𝑦 𝑑 𝑧 ) ) ) |