| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglowdim1.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tglowdim1.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | tglowdim1.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tglowdim1.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tglowdim1.1 | ⊢ ( 𝜑  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 6 |  | tglowdim1i.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 7 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  →  𝐺  ∈  TarskiG ) | 
						
							| 8 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 9 | 1 2 3 7 8 | tglowdim1 | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  →  ∃ 𝑎  ∈  𝑃 ∃ 𝑏  ∈  𝑃 𝑎  ≠  𝑏 ) | 
						
							| 10 |  | eqeq2 | ⊢ ( 𝑦  =  𝑎  →  ( 𝑋  =  𝑦  ↔  𝑋  =  𝑎 ) ) | 
						
							| 11 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  ∧  𝑎  ∈  𝑃 )  ∧  𝑏  ∈  𝑃 )  →  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  ∧  𝑎  ∈  𝑃 )  ∧  𝑏  ∈  𝑃 )  →  𝑎  ∈  𝑃 ) | 
						
							| 13 | 10 11 12 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  ∧  𝑎  ∈  𝑃 )  ∧  𝑏  ∈  𝑃 )  →  𝑋  =  𝑎 ) | 
						
							| 14 |  | eqeq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑋  =  𝑦  ↔  𝑋  =  𝑏 ) ) | 
						
							| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦  ∧  𝑏  ∈  𝑃 )  →  𝑋  =  𝑏 ) | 
						
							| 16 | 15 | ad4ant24 | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  ∧  𝑎  ∈  𝑃 )  ∧  𝑏  ∈  𝑃 )  →  𝑋  =  𝑏 ) | 
						
							| 17 | 13 16 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  ∧  𝑎  ∈  𝑃 )  ∧  𝑏  ∈  𝑃 )  →  𝑎  =  𝑏 ) | 
						
							| 18 |  | nne | ⊢ ( ¬  𝑎  ≠  𝑏  ↔  𝑎  =  𝑏 ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  ∧  𝑎  ∈  𝑃 )  ∧  𝑏  ∈  𝑃 )  →  ¬  𝑎  ≠  𝑏 ) | 
						
							| 20 | 19 | nrexdv | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  ∧  𝑎  ∈  𝑃 )  →  ¬  ∃ 𝑏  ∈  𝑃 𝑎  ≠  𝑏 ) | 
						
							| 21 | 20 | nrexdv | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 )  →  ¬  ∃ 𝑎  ∈  𝑃 ∃ 𝑏  ∈  𝑃 𝑎  ≠  𝑏 ) | 
						
							| 22 | 9 21 | pm2.65da | ⊢ ( 𝜑  →  ¬  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 ) | 
						
							| 23 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝑃 ¬  𝑋  =  𝑦  ↔  ¬  ∀ 𝑦  ∈  𝑃 𝑋  =  𝑦 ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 ¬  𝑋  =  𝑦 ) | 
						
							| 25 |  | df-ne | ⊢ ( 𝑋  ≠  𝑦  ↔  ¬  𝑋  =  𝑦 ) | 
						
							| 26 | 25 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝑃 𝑋  ≠  𝑦  ↔  ∃ 𝑦  ∈  𝑃 ¬  𝑋  =  𝑦 ) | 
						
							| 27 | 24 26 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 𝑋  ≠  𝑦 ) |