| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topdlat.i |
⊢ 𝐼 = ( toInc ‘ 𝐽 ) |
| 2 |
1
|
topclat |
⊢ ( 𝐽 ∈ Top → 𝐼 ∈ CLat ) |
| 3 |
|
clatl |
⊢ ( 𝐼 ∈ CLat → 𝐼 ∈ Lat ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐽 ∈ Top → 𝐼 ∈ Lat ) |
| 5 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝐽 ∈ Top ) |
| 6 |
|
simpr2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐼 ) ) |
| 7 |
1
|
ipobas |
⊢ ( 𝐽 ∈ Top → 𝐽 = ( Base ‘ 𝐼 ) ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝐽 = ( Base ‘ 𝐼 ) ) |
| 9 |
6 8
|
eleqtrrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑦 ∈ 𝐽 ) |
| 10 |
|
simpr3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐼 ) ) |
| 11 |
10 8
|
eleqtrrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑧 ∈ 𝐽 ) |
| 12 |
|
eqid |
⊢ ( join ‘ 𝐼 ) = ( join ‘ 𝐼 ) |
| 13 |
1 5 9 11 12
|
toplatjoin |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) = ( 𝑦 ∪ 𝑧 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) ) = ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ∪ 𝑧 ) ) ) |
| 15 |
|
simpr1 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐼 ) ) |
| 16 |
15 8
|
eleqtrrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑥 ∈ 𝐽 ) |
| 17 |
|
unopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽 ) → ( 𝑦 ∪ 𝑧 ) ∈ 𝐽 ) |
| 18 |
5 9 11 17
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑦 ∪ 𝑧 ) ∈ 𝐽 ) |
| 19 |
|
eqid |
⊢ ( meet ‘ 𝐼 ) = ( meet ‘ 𝐼 ) |
| 20 |
1 5 16 18 19
|
toplatmeet |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ∪ 𝑧 ) ) = ( 𝑥 ∩ ( 𝑦 ∪ 𝑧 ) ) ) |
| 21 |
|
inopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) |
| 22 |
5 16 9 21
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) |
| 23 |
|
inopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑧 ) ∈ 𝐽 ) |
| 24 |
5 16 11 23
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ∩ 𝑧 ) ∈ 𝐽 ) |
| 25 |
1 5 22 24 12
|
toplatjoin |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑥 ∩ 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ∩ 𝑧 ) ) = ( ( 𝑥 ∩ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) |
| 26 |
1 5 16 9 19
|
toplatmeet |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) = ( 𝑥 ∩ 𝑦 ) ) |
| 27 |
1 5 16 11 19
|
toplatmeet |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) = ( 𝑥 ∩ 𝑧 ) ) |
| 28 |
26 27
|
oveq12d |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) = ( ( 𝑥 ∩ 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ∩ 𝑧 ) ) ) |
| 29 |
|
indi |
⊢ ( 𝑥 ∩ ( 𝑦 ∪ 𝑧 ) ) = ( ( 𝑥 ∩ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) |
| 30 |
29
|
a1i |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ∩ ( 𝑦 ∪ 𝑧 ) ) = ( ( 𝑥 ∩ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) |
| 31 |
25 28 30
|
3eqtr4rd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ∩ ( 𝑦 ∪ 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) ) |
| 32 |
14 20 31
|
3eqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) ) |
| 33 |
32
|
ralrimivvva |
⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ∀ 𝑧 ∈ ( Base ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
| 35 |
34 12 19
|
isdlat |
⊢ ( 𝐼 ∈ DLat ↔ ( 𝐼 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ∀ 𝑧 ∈ ( Base ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) ) ) |
| 36 |
4 33 35
|
sylanbrc |
⊢ ( 𝐽 ∈ Top → 𝐼 ∈ DLat ) |