Metamath Proof Explorer


Theorem tz6.12-afv

Description: Function value. Theorem 6.12(1) of TakeutiZaring p. 27, analogous to tz6.12 . (Contributed by Alexander van der Vekens, 29-Nov-2017)

Ref Expression
Assertion tz6.12-afv ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝐹 ''' 𝐴 ) = 𝑦 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ V ∧ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → 𝐴 ∈ V )
2 vex 𝑦 ∈ V
3 2 a1i ( ( 𝐴 ∈ V ∧ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → 𝑦 ∈ V )
4 df-br ( 𝐴 𝐹 𝑦 ↔ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 )
5 4 biimpri ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹𝐴 𝐹 𝑦 )
6 5 adantl ( ( 𝐴 ∈ V ∧ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → 𝐴 𝐹 𝑦 )
7 breldmg ( ( 𝐴 ∈ V ∧ 𝑦 ∈ V ∧ 𝐴 𝐹 𝑦 ) → 𝐴 ∈ dom 𝐹 )
8 1 3 6 7 syl3anc ( ( 𝐴 ∈ V ∧ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → 𝐴 ∈ dom 𝐹 )
9 simpl ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → 𝐴 ∈ dom 𝐹 )
10 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
11 breq1 ( 𝐴 = 𝑥 → ( 𝐴 𝐹 𝑦𝑥 𝐹 𝑦 ) )
12 4 11 syl5bbr ( 𝐴 = 𝑥 → ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹𝑥 𝐹 𝑦 ) )
13 12 eqcoms ( 𝑥 = 𝐴 → ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹𝑥 𝐹 𝑦 ) )
14 13 eubidv ( 𝑥 = 𝐴 → ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ↔ ∃! 𝑦 𝑥 𝐹 𝑦 ) )
15 14 biimpd ( 𝑥 = 𝐴 → ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 → ∃! 𝑦 𝑥 𝐹 𝑦 ) )
16 10 15 sylbi ( 𝑥 ∈ { 𝐴 } → ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 → ∃! 𝑦 𝑥 𝐹 𝑦 ) )
17 16 com12 ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 → ( 𝑥 ∈ { 𝐴 } → ∃! 𝑦 𝑥 𝐹 𝑦 ) )
18 17 adantl ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝑥 ∈ { 𝐴 } → ∃! 𝑦 𝑥 𝐹 𝑦 ) )
19 18 ralrimiv ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ∀ 𝑥 ∈ { 𝐴 } ∃! 𝑦 𝑥 𝐹 𝑦 )
20 fnres ( ( 𝐹 ↾ { 𝐴 } ) Fn { 𝐴 } ↔ ∀ 𝑥 ∈ { 𝐴 } ∃! 𝑦 𝑥 𝐹 𝑦 )
21 fnfun ( ( 𝐹 ↾ { 𝐴 } ) Fn { 𝐴 } → Fun ( 𝐹 ↾ { 𝐴 } ) )
22 20 21 sylbir ( ∀ 𝑥 ∈ { 𝐴 } ∃! 𝑦 𝑥 𝐹 𝑦 → Fun ( 𝐹 ↾ { 𝐴 } ) )
23 19 22 syl ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → Fun ( 𝐹 ↾ { 𝐴 } ) )
24 9 23 jca ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
25 24 ex ( 𝐴 ∈ dom 𝐹 → ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) )
26 8 25 syl ( ( 𝐴 ∈ V ∧ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) )
27 26 impr ( ( 𝐴 ∈ V ∧ ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) ) → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
28 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
29 afvfundmfveq ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
30 28 29 sylbir ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
31 27 30 syl ( ( 𝐴 ∈ V ∧ ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) ) → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
32 tz6.12 ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝐹𝐴 ) = 𝑦 )
33 32 adantl ( ( 𝐴 ∈ V ∧ ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) ) → ( 𝐹𝐴 ) = 𝑦 )
34 31 33 eqtrd ( ( 𝐴 ∈ V ∧ ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) ) → ( 𝐹 ''' 𝐴 ) = 𝑦 )
35 34 ex ( 𝐴 ∈ V → ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝐹 ''' 𝐴 ) = 𝑦 ) )
36 eu2ndop1stv ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹𝐴 ∈ V )
37 36 pm2.24d ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 → ( ¬ 𝐴 ∈ V → ( 𝐹 ''' 𝐴 ) = 𝑦 ) )
38 37 adantl ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( ¬ 𝐴 ∈ V → ( 𝐹 ''' 𝐴 ) = 𝑦 ) )
39 38 com12 ( ¬ 𝐴 ∈ V → ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝐹 ''' 𝐴 ) = 𝑦 ) )
40 35 39 pm2.61i ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝐹 ''' 𝐴 ) = 𝑦 )