Metamath Proof Explorer


Theorem tz7.48-2

Description: Proposition 7.48(2) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997) (Revised by David Abernethy, 5-May-2013)

Ref Expression
Hypothesis tz7.48.1 𝐹 Fn On
Assertion tz7.48-2 ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 tz7.48.1 𝐹 Fn On
2 ssid On ⊆ On
3 onelon ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → 𝑦 ∈ On )
4 3 ancoms ( ( 𝑦𝑥𝑥 ∈ On ) → 𝑦 ∈ On )
5 1 fndmi dom 𝐹 = On
6 5 eleq2i ( 𝑦 ∈ dom 𝐹𝑦 ∈ On )
7 fnfun ( 𝐹 Fn On → Fun 𝐹 )
8 1 7 ax-mp Fun 𝐹
9 funfvima ( ( Fun 𝐹𝑦 ∈ dom 𝐹 ) → ( 𝑦𝑥 → ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ) )
10 8 9 mpan ( 𝑦 ∈ dom 𝐹 → ( 𝑦𝑥 → ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ) )
11 10 impcom ( ( 𝑦𝑥𝑦 ∈ dom 𝐹 ) → ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) )
12 eleq1a ( ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → ( 𝐹𝑥 ) ∈ ( 𝐹𝑥 ) ) )
13 eldifn ( ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ¬ ( 𝐹𝑥 ) ∈ ( 𝐹𝑥 ) )
14 12 13 nsyli ( ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) → ( ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
15 11 14 syl ( ( 𝑦𝑥𝑦 ∈ dom 𝐹 ) → ( ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
16 6 15 sylan2br ( ( 𝑦𝑥𝑦 ∈ On ) → ( ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
17 4 16 syldan ( ( 𝑦𝑥𝑥 ∈ On ) → ( ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
18 17 expimpd ( 𝑦𝑥 → ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
19 18 com12 ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) → ( 𝑦𝑥 → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
20 19 ralrimiv ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) → ∀ 𝑦𝑥 ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
21 20 ralimiaa ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
22 1 tz7.48lem ( ( On ⊆ On ∧ ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → Fun ( 𝐹 ↾ On ) )
23 2 21 22 sylancr ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → Fun ( 𝐹 ↾ On ) )
24 fnrel ( 𝐹 Fn On → Rel 𝐹 )
25 1 24 ax-mp Rel 𝐹
26 5 eqimssi dom 𝐹 ⊆ On
27 relssres ( ( Rel 𝐹 ∧ dom 𝐹 ⊆ On ) → ( 𝐹 ↾ On ) = 𝐹 )
28 25 26 27 mp2an ( 𝐹 ↾ On ) = 𝐹
29 28 cnveqi ( 𝐹 ↾ On ) = 𝐹
30 29 funeqi ( Fun ( 𝐹 ↾ On ) ↔ Fun 𝐹 )
31 23 30 sylib ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → Fun 𝐹 )